2011 DetectingBotsviaIncrementalLSSV
- (Chen et al., 2011) ⇒ Feilong Chen, Supranamaya Ranjan, and Pang-Ning Tan. (2011). “Detecting Bots via Incremental LS-SVM Learning with Dynamic Feature Adaptation.” In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2011) Journal. ISBN:978-1-4503-0813-7 doi:10.1145/2020408.2020471
Subject Headings:
Notes
Cited By
- http://scholar.google.com/scholar?q=%222011%22+Detecting+Bots+via+Incremental+LS-SVM+Learning+with+Dynamic+Feature+Adaptation
- http://dl.acm.org/citation.cfm?id=2020408.2020471&preflayout=flat#citedby
Quotes
Author Keywords
Abstract
As botnets continue to proliferate and grow in sophistication, so does the need for more advanced security solutions to effectively detect and defend against such attacks. In particular, botnets such as Conficker have been known to encrypt the communication packets exchanged between bots and their command-and-control server, making it costly for existing botnet detection systems that rely on deep packet inspection (DPI) methods to identify compromised machines. In this paper, we argue that, even in the face of encrypted traffic flows, botnets can still be detected by examining the set of server IP-addresses visited by a client machine in the past. However there are several challenges that must be addressed. First, the set of server IP-addresses visited by client machines may evolve dynamically. Second, the set of client machines used for training and their class labels may also change over time. To overcome these challenges, this paper presents a novel incremental LS-SVM algorithm that is adaptive to both changes in the feature set and class labels of training instances. To evaluate the performance of our algorithm, we have performed experiments on two large-scale datasets, including real-time data collected from peering routers at a large Tier-1 ISP. Experimental results showed that the proposed algorithm produces classification accuracy comparable to its batch counterpart, while consuming significantly less computational resources.
References
;
Author | volume | Date Value | title | type | journal | titleUrl | doi | note | year | |
---|---|---|---|---|---|---|---|---|---|---|
2011 DetectingBotsviaIncrementalLSSV | Pang-Ning Tan Feilong Chen Supranamaya Ranjan | Detecting Bots via Incremental LS-SVM Learning with Dynamic Feature Adaptation | 10.1145/2020408.2020471 | 2011 |