2024 HallucinationDiversityAwareActi

From GM-RKB
Jump to navigation Jump to search

Subject Headings: LLM Hallucination.

Notes

Cited By

Quotes

Abstract

Large Language Models (LLMs) have shown propensity to generate hallucinated outputs, i.e., texts that are factually incorrect or unsupported. Existing methods for alleviating hallucinations typically require costly human annotations to identify and correct hallucinations in LLM outputs. Moreover, most of these methods focus on a specific type of hallucination, e.g., entity or token errors, which limits their effectiveness in addressing various types of hallucinations exhibited in LLM outputs. To our best knowledge, in this paper we propose the first active learning framework to alleviate LLM hallucinations, reducing costly human annotations of hallucination needed. By measuring fine-grained hallucinations from errors in semantic frame, discourse and content verifiability in text summarization, we propose HAllucination Diversity-Aware Sampling (HADAS) to select diverse hallucinations for annotations in active learning for LLM finetuning. Extensive experiments on three datasets and different backbone models demonstrate advantages of our method in effectively and [[efficiently mitigating LLM hallucinations.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2024 HallucinationDiversityAwareActiYu Xia
Xu Liu
Tong Yu
Sungchul Kim
Ryan A. Rossi
Anup Rao
Tung Mai
Shuai Li
Hallucination Diversity-Aware Active Learning for Text Summarization10.48550/arXiv.2404.015882024