ID
|
Term
|
Page
|
Type
|
Redirect
|
Author(s)
|
mult alp
|
Synonym
|
Cross References
|
GM-RKB Entry
|
|
1
|
Abduction
|
3
|
A
|
|
Antonis C. Kakas
|
|
|
Explanation-Based Learning ; Inductive Logic Programming
|
(Antonis C. Kakas, 2011) ⇒ Antonis C. Kakas. (2011). “Abduction.” In: (Sammut & Webb, 2011)
|
|
6
|
Active Learning
|
10
|
A
|
|
David Cohn
|
|
|
Active Learning Theory
|
(David Cohn, 2011) ⇒ David Cohn. (2011). “Active Learning.” In: (Sammut & Webb, 2011)
|
|
7
|
Active Learning Theory
|
14
|
A
|
|
Sango Dasgupta
|
|
|
Active Learning
|
(Sango Dasgupta, 2011) ⇒ Sango Dasgupta. (2011). “Active Learning Theory.” In: (Sammut & Webb, 2011)
|
|
10
|
Adaptive Real-Time Dynamic Programming
|
20
|
A
|
|
Andrew G. Barto
|
|
ARTDP
|
Anytime Algorithm ; Approximate Dynamic Programming ; Reinforcement Learning ; System Identification
|
(Andrew G. Barto, 2011) ⇒ Andrew G. Barto. (2011). “Adaptive Real-Time Dynamic Programming.” In: (Sammut & Webb, 2011)
|
|
11
|
Adaptive Resonance Theory
|
23
|
A
|
|
Gail A. Carpenter; Stephen Grossberg
|
|
|
Bayes Rule ; Bayesian Methods
|
(Gail A. Carpenter; Stephen Grossberg, 2011) ⇒ Gail A. Carpenter; Stephen Grossberg. (2011). “Adaptive Resonance Theory.” In: (Sammut & Webb, 2011)
|
|
18
|
Algorithm Evaluation
|
36
|
A
|
|
Geoffrey I. Webb
|
a
|
|
Computational Learning Theory ; Model Evaluation
|
(Geoffrey I. Webb, 2011a) ⇒ Geoffrey I. Webb. (2011). “Algorithm Evaluation.” In: (Sammut & Webb, 2011)
|
|
22
|
Ant Colony Optimization
|
37
|
A
|
|
Marco Doigo; Mauro Birattari
|
|
ACO
|
Swarm Intelligence
|
(Marco Doigo; Mauro Birattari, 2011) ⇒ Marco Doigo; Mauro Birattari. (2011). “Ant Colony Optimization.” In: (Sammut & Webb, 2011)
|
|
27
|
Apriori Algorithm
|
40
|
A
|
|
Hannu Toivonen
|
a
|
|
Association Rule ; Basket Analysis ; Constraint-Based Mining ; Frequent Itemset ; Frequent Pattern
|
(Hannu Toivonen, 2011a) ⇒ Hannu Toivonen. (2011). “Apriori Algorithm.” In: (Sammut & Webb, 2011)
|
|
33
|
Artificial Immune Systems
|
41
|
A
|
|
Jon Timmis
|
|
|
AIS ; Immune computing ; Immune-inspired computing ; Immunocomputing ; Immunological computation
|
(Jon Timmis, 2011) ⇒ Jon Timmis. (2011). “Artificial Immune Systems.” In: (Sammut & Webb, 2011)
|
|
36
|
Artificial Societies
|
45
|
A
|
|
Jurgen Branke
|
|
Agent-based computational models ; Agent-based modeling and simulation ; Agent-based simulation models
|
Artificial life ; Behavioural cloning ; Co-evolutionary learning ; Multi-agent learning.
|
(Jurgen Branke, 2011) ⇒ Jurgen Branke. (2011). “Artificial Societies.” In: (Sammut & Webb, 2011)
|
|
38
|
Association Rule
|
49
|
A
|
|
Hannu Toivonen
|
b
|
|
Apriori Algorithm ; Basket Analysis ; Frequent Itemset ; Frequent Pattern
|
(Hannu Toivonen, 2011b) ⇒ Hannu Toivonen. (2011). “Association Rule.” In: (Sammut & Webb, 2011)
|
|
40
|
Associative Reinforcement Learning
|
50
|
A
|
|
Alexander L. Strehl
|
|
Associative bandit problem ; Bandit problem with side information ; bandit problem with side observation ; One-step reinforcement learning
|
|
(Alexander L. Strehl, 2011) ⇒ Alexander L. Strehl. (2011). “Associative Reinforcement Learning.” In: (Sammut & Webb, 2011)
|
|
41
|
Attribute
|
52
|
A
|
|
Chris Drummond
|
a
|
Characteristic ; Feature ; Property ; Trait
|
|
(Chris Drummond, 2011a) ⇒ Chris Drummond. (2011). “Attribute.” In: (Sammut & Webb, 2011)
|
|
45
|
Autonomous Helicopter Flight Using Reinforcement Learning
|
54
|
A
|
|
Adam Coates; Pieter Abbeel; Andrew Y. Ng
|
|
|
Apprenticeship Learning ; Reinforcement Learning ; Reward Shaping
|
([[Adam Coates; Pieter Abbeel; Andrew Y. Ng, 2011]]) ⇒ Adam Coates; Pieter Abbeel; Andrew Y. Ng. (2011). “Autonomous Helicopter Flight Using Reinforcement Learning.” In: (Sammut & Webb, 2011)
|
|
48
|
Average One-Dependence Estimators
|
63
|
A
|
|
Fei Zheng; Geoffrey I. Webb
|
a
|
AODE
|
Bayesian Network ; Naïve Bayes ; Semi-Naïve Bayesian Learning ; Tree-Augmented Naïve Bayes
|
([[Fei Zheng; Geoffrey I. Webb, 2011a]]) ⇒ Fei Zheng; Geoffrey I. Webb. (2011). “Average One-Dependence Estimators.” In: (Sammut & Webb, 2011)
|
|
50
|
Average-Reward Reinforcement Learning
|
64
|
A
|
|
Prasad Tadepalli
|
|
ARL ; Average-cost neuro-dynamic programming ; Average cost optimization ; Average-payoff reinforcement learning
|
Efficient Exploration in Reinforcement Learning ; Hierarchical Reinforcement Learning ; Model-Based Reinforcement Learning
|
(Prasad Tadepalli, 2011) ⇒ Prasad Tadepalli. (2011). “Average-Reward Reinforcement Learning.” In: (Sammut & Webb, 2011)
|
|
53
|
Backpropagation
|
69
|
A
|
|
Paul Munro
|
|
Backprop ; BP ; Generalized delta rule
|
Artificial Neural Networks
|
(Paul Munro, 2011) ⇒ Paul Munro. (2011). “Backpropagation.” In: (Sammut & Webb, 2011)
|
|
59
|
Basket Analysis
|
74
|
A
|
|
Hannu Toivonen
|
c
|
Market basket analysis
|
Apriori Algorithm ; Association Rule ; Frequent Itemset ; Frequent Pattern
|
(Hannu Toivonen, 2011c) ⇒ Hannu Toivonen. (2011). “Basket Analysis.” In: (Sammut & Webb, 2011)
|
|
64
|
Bayes Rule
|
74
|
A
|
|
Geoffrey I. Webb
|
b
|
|
Bayesian Methods ; Bayesian Network ; Naïve Bayes ; Semi-Naïve Bayesian Learning
|
(Geoffrey I. Webb, 2011b) ⇒ Geoffrey I. Webb. (2011). “Bayes Rule.” In: (Sammut & Webb, 2011)
|
|
65
|
Bayesian Methods
|
75
|
A
|
|
Wray Buntine
|
|
|
Bayes Rule ; Bayesian nonparametric Models ; Markov Chain Monte Carlo ; Prior Probability
|
(Wray Buntine, 2011) ⇒ Wray Buntine. (2011). “Bayesian Methods.” In: (Sammut & Webb, 2011)
|
|
68
|
Bayesian Nonparametric Models
|
81
|
A
|
|
Peter Orbanz; Yee Whye The
|
|
Bayesian methods ; Dirichlet process ; Gaussian processes ; Prior probabilities
|
Bayesian Methods ; Dirichlet Processes ; Gaussian Processes ; Mixture Modelling ; Prior Probabilities
|
(Peter Orbanz; Yee Whye The, 2011) ⇒ Peter Orbanz; Yee Whye The. (2011). “Bayesian Nonparametric Models.” In: (Sammut & Webb, 2011)
|
|
69
|
Bayesian Reinforcement Learning
|
90
|
A
|
|
Pascal Poupart
|
|
Adaptive control processes ; Bayes adaptive Markov decision processes Dual control ; Optimal learning
|
Active Learning ; Markov Decision Processes, Reinforcement Learning
|
(Pascal Poupart, 2011) ⇒ Pascal Poupart. (2011). “Bayesian Reinforcement Learning.” In: (Sammut & Webb, 2011)
|
|
70
|
Beam Search
|
93
|
A
|
|
Claude Sammut
|
|
|
Learning as Search
|
(Claude Sammut, 2011) ⇒ Claude Sammut. (2011). “Beam Search.” In: (Sammut & Webb, 2011)
|
|
71
|
Behavioral Cloning
|
93
|
A
|
|
Claude Sammut
|
a
|
Apprenticeship learning ; Behavioral cloning ; Learning by demonstration ; Learning by imitation ; Learning control rules
|
Apprenticeship Learning ; Inverse Reinforcement Learning ; Learning by Imitation ; Locally Weighted Regression ; Model Trees ; Reinforcement Learning ; System Identification.
|
(Claude Sammut, 2011a) ⇒ Claude Sammut. (2011). “Behavioral Cloning.” In: (Sammut & Webb, 2011)
|
|
75
|
Bias Specific Language
|
98
|
A
|
|
Hendrik Blockeel
|
a
|
|
Hypothesis Language ; Inductive Logic-Programming
|
(Hendrik Blockeel, 2011a) ⇒ Hendrik Blockeel. (2011). “Bias Specific Language.” In: (Sammut & Webb, 2011)
|
|
77
|
Bias-Variance Trade-offs; Novel Applications
|
101
|
A
|
|
Dev Rajnarayan; David Wolpert
|
|
|
|
(Dev Rajnarayan; David Wolpert, 2011) ⇒ Dev Rajnarayan; David Wolpert. (2011). “Bias-Variance Trade-offs; Novel Applications.” In: (Sammut & Webb, 2011)
|
|
82
|
Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity
|
111
|
A
|
|
Wulfram Gerstner
|
|
Correlation-based learning ; Hebb rule ; Hebbian learning
|
Dimensionality Reduction ; Reinforcement Learning ; self-Organizing Maps
|
(Wulfram Gerstner, 2011) ⇒ Wulfram Gerstner. (2011). Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity In: (Sammut & Webb, 2011)
|
|
83
|
Biomedical Informatics
|
114
|
A
|
|
C. David Page; Sriraam Natarajan
|
|
|
Learning Models of Biological Sequences
|
(C. David Page; Sriraam Natarajan, 2011) ⇒ C. David Page; Sriraam Natarajan. (2011). “Biomedical Informatics.” In: (Sammut & Webb, 2011)
|
|
85
|
Boltzmann Machine
|
132
|
A
|
|
Geoffrey Hinton
|
a
|
Boltzmann machines
|
|
(Geoffrey Hinton, 2011a) ⇒ Geoffrey Hinton. (2011). “Boltzmann Machine.” In: (Sammut & Webb, 2011)
|
|
96
|
Cascade-Correlation
|
139
|
A
|
|
Thomas R. Shultz; Scott E. Fahlman
|
|
Cascor ; CC
|
Artificial Neural Networks ; Backpropagation
|
(Thomas R. Shultz; Scott E. Fahlman, 2011) ⇒ Thomas R. Shultz; Scott E. Fahlman. (2011). “Cascade-Correlation.” In: (Sammut & Webb, 2011)
|
|
101
|
Case-Based Reasoning
|
147
|
A
|
|
Susan Craw
|
a
|
CBR ; Experience-based reasoning ; Lessons-learned systems ; Memory-based learning
|
Explanation-Based Learning ; Instance-Based Learning ; Lazy Learning ; Nearest Neighbor ; Similarity Metrics
|
(Susan Craw, 2011a) ⇒ Susan Craw. (2011). “Case-Based Reasoning.” In: (Sammut & Webb, 2011)
|
|
103
|
Categorical Data Clustering
|
154
|
A
|
|
Periklis Andritsos; Panayiotis Tsaparas
|
|
Clustering of nonnumerical data ; Grouping
|
Clustering ; Data Mining ; Graph Clustering ; Instance-Based Learning ; Partitional clustering
|
(Periklis Andritsos; Panayiotis Tsaparas, 2011) ⇒ Periklis Andritsos; Panayiotis Tsaparas. (2011). “Categorical Data Clustering.” In: (Sammut & Webb, 2011)
|
|
107
|
Causality
|
159
|
A
|
|
Ricardo Silva
|
|
|
Graphical Models ; Learning Graphical Models
|
(Ricardo Silva, 2011) ⇒ Ricardo Silva. (2011). “Causality.” In: (Sammut & Webb, 2011)
|
|
113
|
Class
|
166
|
A
|
|
Chris Drummond
|
b
|
Category ; Class ; Collection ; Kind ; Set ; Sort ; Type
|
|
(Chris Drummond, 2011b) ⇒ Chris Drummond. (2011). “Class.” In: (Sammut & Webb, 2011)
|
|
114
|
Class Imbalance Problem
|
167
|
A
|
|
Charles X. Ling; Victor S. Sheng
|
|
|
|
(Charles X. Ling; Victor S. Sheng, 2011) ⇒ Charles X. Ling; Victor S. Sheng. (2011). “Class Imbalance Problem.” In: (Sammut & Webb, 2011)
|
|
115
|
Classification
|
168
|
A
|
|
Chris Drummond
|
c
|
Categorization ; Generalization ; Identification ; Induction ; Recognition
|
|
(Chris Drummond, 2011c) ⇒ Chris Drummond. (2011). “Classification.” In: (Sammut & Webb, 2011)
|
|
118
|
Classifier Systems
|
172
|
A
|
|
Pier Luca Lanzi
|
|
Genetics-based machine learning ; Learning classifier systems
|
Credit Assignment ; Genetic Algorithms ; Reinforcement Learning ; Rule Learning
|
(Pier Luca Lanzi, 2011) ⇒ Pier Luca Lanzi. (2011). “Classifier Systems.” In: (Sammut & Webb, 2011)
|
|
130
|
Clustering from Data Streams
|
180
|
A
|
|
Joao Gama
|
|
|
|
(Joao Gama, 2011) ⇒ Joao Gama. (2011). “Clustering from Data Streams.” In: (Sammut & Webb, 2011)
|
|
140
|
Coevolutionary Learning
|
184
|
A
|
|
Paul Wiegand
|
|
Coevolution ; Coevolutionary computation
|
Evolutionary Algorithms
|
(Paul Wiegand, 2011) ⇒ Paul Wiegand. (2011). “Coevolutionary Learning.” In: (Sammut & Webb, 2011)
|
|
143
|
Collective Classification
|
189
|
A
|
|
Prithviraj Sen; Galileo Namata; Mustafa Bilgic; Lise Getoor
|
|
Interactive classification ; Link-based classification
|
Decision Trees ; Inductive Logic Programming ; Learning from Structured Data ; Relational Learning ; Semi-Supervised Learning ; Statistical Relational Learning
|
(Prithviraj Sen; Galileo Namata; Mustafa Bilgic; Lise Getoor, 2011) ⇒ Prithviraj Sen; Galileo Namata; Mustafa Bilgic; Lise Getoor. (2011). “Collective Classification.” In: (Sammut & Webb, 2011)
|
|
151
|
Complexity in Adaptive Systems
|
194
|
A
|
|
Jun He
|
|
Adaptive system ; Complex adaptive system
|
|
(Jun He, 2011) ⇒ Jun He. (2011). “Complexity in Adaptive Systems.” In: (Sammut & Webb, 2011)
|
|
152
|
Complexity of Inductive Inference
|
198
|
A
|
|
Sanjay Jain; Frank Stephan
|
a
|
|
|
(Sanjay Jain; Frank Stephan, 2011a) ⇒ Sanjay Jain; Frank Stephan. (2011). “Complexity of Inductive Inference.” In: (Sammut & Webb, 2011)
|
|
156
|
Concept Drift
|
202
|
A
|
|
Claude Sammut; Michael Harries
|
|
Context-sensitive learning ; Learning with hidden context.
|
Decision Trees ; Ensemble Methods ; Incremental Learning ; Inductive Logic Programming ; Lazy Learning
|
(Claude Sammut; Michael Harries, 2011) ⇒ Claude Sammut; Michael Harries. (2011). “Concept Drift.” In: (Sammut & Webb, 2011)
|
|
157
|
Concept Learning
|
205
|
A
|
|
Claude Sammut
|
b
|
Categorization ; Classification learning
|
Data Mining ; Decision Tree Learning ; Inductive Logic Programming ; Relational Learning ; Rule Learning
|
(Claude Sammut, 2011b) ⇒ Claude Sammut. (2011). “Concept Learning.” In: (Sammut & Webb, 2011)
|
|
160
|
Confusion Matrix
|
209
|
A
|
|
Kai Ming Ting
|
a
|
|
|
(Kai Ming Ting, 2011a) ⇒ Kai Ming Ting. (2011). “Confusion Matrix.” In: (Sammut & Webb, 2011)
|
|
161
|
Conjunctive Normal Form
|
209
|
A
|
|
Bernhard Pfahringer
|
a
|
|
|
(Bernhard Pfahringer, 2011a) ⇒ Bernhard Pfahringer. (2011). “Conjunctive Normal Form.” In: (Sammut & Webb, 2011)
|
|
163
|
Connections Between Inductive Inference and Machine Learning
|
210
|
A
|
|
John Case; Sanjay Jain
|
|
|
Behavioural Cloning ; Clustering ; Concept Drift ; Inductive Logic Programming ; Transfer Learning
|
(John Case; Sanjay Jain, 2011) ⇒ John Case; Sanjay Jain. (2011). “Connections Between Inductive Inference and Machine Learning.” In: (Sammut & Webb, 2011)
|
|
166
|
Constrained Clustering
|
220
|
A
|
|
Kiri L. Wagstaff
|
|
|
|
(Kiri L. Wagstaff, 2011) ⇒ Kiri L. Wagstaff. (2011). “Constrained Clustering.” In: (Sammut & Webb, 2011)
|
|
167
|
Constraint-Based Mining
|
221
|
A
|
|
Siegfried Nijssen
|
a
|
|
Constrained Clustering ; Frequent Pattern Mining ; Graph Mining ; Tree Mining
|
(Siegfried Nijssen, 2011a) ⇒ Siegfried Nijssen. (2011). “Constraint-Based Mining.” In: (Sammut & Webb, 2011)
|
|
179
|
Correlation Clustering
|
227
|
A
|
|
Anthony Wirth
|
|
Clustering with advice ; Clustering with constraints ; Clustering with qualitative information ; Clustering with side information
|
|
(Anthony Wirth, 2011) ⇒ Anthony Wirth. (2011). “Correlation Clustering.” In: (Sammut & Webb, 2011)
|
|
184
|
Cost-sensitive Learning
|
231
|
A
|
|
Charles X. Ling; Victor S. Sheng.
|
|
Cost-sensitive classification ; Learning with different classification costs
|
|
(Charles X. Ling; Victor S. Sheng., 2011) ⇒ Charles X. Ling; Victor S. Sheng.. (2011). “Cost-sensitive Learning.” In: (Sammut & Webb, 2011)
|
|
186
|
Covariance Matrix
|
235
|
A
|
|
Xinhua Zhang
|
a
|
|
Gaussian Distribution ; Gaussian Processes ; Kernel Methods
|
(Xinhua Zhang, 2011a) ⇒ Xinhua Zhang. (2011). “Covariance Matrix.” In: (Sammut & Webb, 2011)
|
|
188
|
Credit Assignment
|
238
|
A
|
|
Claude Sammut
|
c
|
Structural credit assignment ; Temporal credit assignment
|
Bayesian Network ; Classifier Systems ; Generic Algorithms
|
(Claude Sammut, 2011c) ⇒ Claude Sammut. (2011). “Credit Assignment.” In: (Sammut & Webb, 2011)
|
|
192
|
Cross-Lingual Text Mining
|
243
|
A
|
|
Nicola Cancedda, Jean-Michel Renders
|
|
|
|
(Nicola Cancedda, Jean-Michel Renders, 2011) ⇒ Nicola Cancedda, Jean-Michel Renders. (2011). “Cross-Lingual Text Mining.” In: (Sammut & Webb, 2011)
|
|
194
|
Cumulative Learning
|
249
|
A
|
|
Pietro Michelucci; Daniel Oblinger
|
|
Continual learning ; Lifelong learning ; Sequential inductive transfer
|
|
(Pietro Michelucci; Daniel Oblinger, 2011) ⇒ Pietro Michelucci; Daniel Oblinger. (2011). “Cumulative Learning.” In: (Sammut & Webb, 2011)
|
|
195
|
Curse of Dimensionality
|
257
|
A
|
|
Eamonn Keogh; Abdullah Mueen
|
|
|
|
(Eamonn Keogh; Abdullah Mueen, 2011) ⇒ Eamonn Keogh; Abdullah Mueen. (2011). “Curse of Dimensionality.” In: (Sammut & Webb, 2011)
|
|
198
|
Data Preparation
|
259
|
A
|
|
Geoffrey I. Webb
|
c
|
Data preprocessing ; Feature construction
|
Data Set ; Discretization ; Entity Resolution ; Evolutionary Feature Selection and Construction ; Feature Construction and Text Mining ; Kernel Methods ; Measurement Scales ; Missing Values ; Noise ; Principal Component Analysis ; Propositionalization
|
(Geoffrey I. Webb, 2011c) ⇒ Geoffrey I. Webb. (2011). “Data Preparation.” In: (Sammut & Webb, 2011)
|
|
203
|
Decision List
|
261
|
A
|
|
Johannes Furnkranz
|
a
|
Ordered rule set
|
Classification Rule ; Disjunctive Normal Form ; Rule Learning
|
(Johannes Furnkranz, 2011a) ⇒ Johannes Furnkranz. (2011). “Decision List.” In: (Sammut & Webb, 2011)
|
|
204
|
Decision Lists and Decision Trees
|
261
|
A
|
|
Johannes Furnkranz
|
b
|
|
Covering Algorithm ; Decision Trees ; Divide-and-Conquer Learning ; Rule Learning
|
(Johannes Furnkranz, 2011b) ⇒ Johannes Furnkranz. (2011). “Decision Lists and Decision Trees.” In: (Sammut & Webb, 2011)
|
|
208
|
Decision Tree
|
|
A
|
|
Johannes Furnkranz
|
c
|
C4:5 ; CART ; Classification tree
|
Decision List ; Decision Lists and Decision Trees ; Decision Stump ; Divide-and-Conquer Learning ; Model Tree ; Pruning ; Regression ; Rule Learning
|
(Johannes Furnkranz, 2011c) ⇒ Johannes Furnkranz. (2011). “Decision Tree.” In: (Sammut & Webb, 2011)
|
|
212
|
Deep Belief Nets
|
267
|
A
|
|
Geoffrey Hinton
|
b
|
Deep belief networks
|
|
(Geoffrey Hinton, 2011b) ⇒ Geoffrey Hinton. (2011). “Deep Belief Nets.” In: (Sammut & Webb, 2011)
|
|
214
|
Density Estimation
|
270
|
A
|
|
Claude Sammut
|
d
|
Kernel density estimation
|
Kernel Methods ; Locally weighted Regression for Control ; Mixture of Models ; Nearest Neighbor ; Support Vector Machine
|
(Claude Sammut, 2011d) ⇒ Claude Sammut. (2011). “Density Estimation.” In: (Sammut & Webb, 2011)
|
|
215
|
Density-Based Clustering
|
270
|
A
|
|
Joerg Sander
|
|
Estimation of density level sets ; Mode analysis ; Non-parametric cluster analysis
|
Clustering ; Density Estimation
|
(Joerg Sander, 2011) ⇒ Joerg Sander. (2011). “Density-Based Clustering.” In: (Sammut & Webb, 2011)
|
|
220
|
Dimensionality Reduction
|
274
|
A
|
|
Michail Vlachos
|
a
|
Feature extraction
|
Curse of Dimensionality ; Feature Selection
|
(Michail Vlachos, 2011a) ⇒ Michail Vlachos. (2011). “Dimensionality Reduction.” In: (Sammut & Webb, 2011)
|
|
223
|
Dirichlet Process
|
280
|
A
|
|
Yee Whye The
|
|
|
Bayesian Methods ; Bayesian Nonparametrics ; Clustering ; Density Estimation ; Gaussian Process ; Prior Probabilities
|
(Yee Whye The, 2011) ⇒ Yee Whye The. (2011). “Dirichlet Process.” In: (Sammut & Webb, 2011)
|
|
225
|
Discretization
|
287
|
A
|
|
Ying Yang
|
a
|
Binning
|
|
(Ying Yang, 2011a) ⇒ Ying Yang. (2011). “Discretization.” In: (Sammut & Webb, 2011)
|
|
227
|
Disjunctive Normal Form
|
289
|
A
|
|
Bernhard Pfahringer
|
b
|
|
|
(Bernhard Pfahringer, 2011b) ⇒ Bernhard Pfahringer. (2011). “Disjunctive Normal Form.” In: (Sammut & Webb, 2011)
|
|
234
|
Document Classification
|
289
|
A
|
|
Dunja Mladeni; Janez Brank; Marko Grobelnik
|
|
Document categorization ; Supervised learning on text data
|
Classification ; Document Clustering ; Feature Selection ; Perception ; Semi-Supervised Text Processing ; Support Vector Machine ; Text Visualization
|
([[Dunja Mladeni; Janez Brank; Marko Grobelnik, 2011]]) ⇒ Dunja Mladeni; Janez Brank; Marko Grobelnik. (2011). “Document Classification.” In: (Sammut & Webb, 2011)
|
|
235
|
Document Clustering
|
293
|
A
|
|
Ying Zhao; George Karypis
|
|
High-dimensional clustering ; Text clustering ; Unsupervised learning on document datasets
|
Clustering ; Information Retrieval ; Text Mining ; Unsupervised Learning
|
([[Ying Zhao; George Karypis, 2011]]) ⇒ Ying Zhao; George Karypis. (2011). “Document Clustering.” In: (Sammut & Webb, 2011)
|
|
240
|
Dynamic Memory Model
|
298
|
A
|
|
Susan Craw
|
b
|
Dynamic Memory Model ; Memory organization packets
|
Case-Based Reasoning
|
(Susan Craw, 2011b) ⇒ Susan Craw. (2011). “Dynamic Memory Model.” In: (Sammut & Webb, 2011)
|
|
241
|
Dynamic Programming
|
298
|
A
|
|
Martin L. Puterman, Jonathan Patrick
|
|
|
Markov Decision Processes ; Partially Observable Markov Decision Processes
|
(Martin L. Puterman, Jonathan Patrick, 2011) ⇒ Martin L. Puterman, Jonathan Patrick. (2011). “Dynamic Programming.” In: (Sammut & Webb, 2011)
|
|
249
|
Efficient Exploration in Reinforcement Learning
|
309
|
A
|
|
John Langford
|
|
PAC-MDP learning
|
k Armed Bandit ; Reinforcement Learning
|
(John Langford, 2011) ⇒ John Langford. (2011). “Efficient Exploration in Reinforcement Learning.” In: (Sammut & Webb, 2011)
|
|
255
|
Empirical Risk Minimization
|
312
|
A
|
|
Xinhua Zhang
|
b
|
|
|
(Xinhua Zhang, 2011b) ⇒ Xinhua Zhang. (2011). “Empirical Risk Minimization.” In: (Sammut & Webb, 2011)
|
|
256
|
Ensemble Learning
|
312
|
A
|
|
Gavin Brown
|
|
Committee machines ; Multiple classifier systems
|
|
(Gavin Brown, 2011) ⇒ Gavin Brown. (2011). “Ensemble Learning.” In: (Sammut & Webb, 2011)
|
|
258
|
Entity Resolution
|
321
|
A
|
|
Indrajit Bhattacharya; Lise Getoor
|
|
Co-reference resolution ; Deduplication ; Duplicate detection ; Identity uncertainty ; Merge-purge ; Object consolidation ; Record linkage ; Reference reconciliation
|
Classification ; Data Preparation ; Graph Clustering ; Similarity Metrics ; Statistical Relational Learning
|
(Indrajit Bhattacharya; Lise Getoor, 2011) ⇒ Indrajit Bhattacharya; Lise Getoor. (2011). “Entity Resolution.” In: (Sammut & Webb, 2011)
|
|
260
|
Epsilon Covers
|
326
|
A
|
|
Thomas Zeugmann
|
a
|
|
Statistical Machine Learning ; Support Vector Machines
|
(Thomas Zeugmann, 2011a) ⇒ Thomas Zeugmann. (2011). “Epsilon Covers.” In: (Sammut & Webb, 2011)
|
|
261
|
Epsilon Nets
|
326
|
A
|
|
Thomas Zeugmann
|
b
|
|
PAC Learning ; VC Dimension
|
(Thomas Zeugmann, 2011b) ⇒ Thomas Zeugmann. (2011). “Epsilon Nets.” In: (Sammut & Webb, 2011)
|
|
262
|
Equation Discovery
|
327
|
A
|
|
Ljupco Todorovski
|
a
|
Computational discovery of quantitative laws ; Symbolic regression
|
Inductive Process Modeling ; Language Bias ; Learning as Search ; Linear Regression ; Measurement Scales ; Regression ; System Identification
|
(Ljupco Todorovski, 2011a) ⇒ Ljupco Todorovski. (2011). “Equation Discovery.” In: (Sammut & Webb, 2011)
|
|
266
|
Error Rate
|
331
|
A
|
|
Kai Ming Ting
|
b
|
Error
|
Accuracy ; Confusion matrix ; Mean absolute error ; Mean squared error
|
(Kai Ming Ting, 2011b) ⇒ Kai Ming Ting. (2011). “Error Rate.” In: (Sammut & Webb, 2011)
|
|
275
|
Evolutionary Clustering
|
332
|
A
|
|
David Corne; Julia Handl
|
|
Cluster optimization ; Evolutionary grouping ; Genetic clustering ; Genetic grouping.
|
Clustering ; Feature Selection ; Semi-Supervised Learning
|
(David Corne; Julia Handl, 2011) ⇒ David Corne; Julia Handl. (2011). “Evolutionary Clustering.” In: (Sammut & Webb, 2011)
|
|
277
|
Evolutionary Computation in Economics
|
337
|
A
|
|
Serafin Martinez-Jaramillo; Biliana Alexandrova-Kabadjova; Alma Lilia Garcia-Almanza; Tonatiuh Pena Centeno
|
a
|
|
Evolutionary Algorithms ; Evolutionary Computation in Finance ; Evolutionary Computational Techniques in Marketing ; Genetic Algorithms ; Genetic Programming
|
(Serafin Martinez-Jaramillo; Biliana Alexandrova-Kabadjova; Alma Lilia Garcia-Almanza; Tonatiuh Pena Centeno, 2011a) ⇒ Serafin Martinez-Jaramillo; Biliana Alexandrova-Kabadjova; Alma Lilia Garcia-Almanza; Tonatiuh Pena Centeno. (2011). “Evolutionary Computation in Economics.” In: (Sammut & Webb, 2011)
|
|
278
|
Evolutionary Computation in Finance
|
344
|
A
|
|
Serafin Martinez-Jaramillo; Biliana Alexandrova-Kabadjova; Alma Lilia Garcia-Almanza; Tonatiuh Pena Centeno
|
b
|
|
Evolutionary Algorithms ; Evolutionary Computation in Economics ; Evolutionary Computational Techniques in Marketing ; Genetic Algorithms ; Genetic Programming
|
(Serafin Martinez-Jaramillo; Biliana Alexandrova-Kabadjova; Alma Lilia Garcia-Almanza; Tonatiuh Pena Centeno, 2011b) ⇒ Serafin Martinez-Jaramillo; Biliana Alexandrova-Kabadjova; Alma Lilia Garcia-Almanza; Tonatiuh Pena Centeno. (2011). “Evolutionary Computation in Finance.” In: (Sammut & Webb, 2011)
|
|
279
|
Evolutionary Computational Techniques in Marketing
|
351
|
A
|
|
Alma Lilia Garcia-Almanza; Biliana Alexandrova-Kabadjova; Serafin Martinez- Jaramillo
|
|
|
Evolutionary Algorithms ; Evolutionary Computation in Economics ; Evolutionary Computation in Finance ; Genetic Algorithms ; Genetic Programming
|
(Alma Lilia Garcia-Almanza; Biliana Alexandrova-Kabadjova; Serafin Martinez- Jaramillo, 2011) ⇒ Alma Lilia Garcia-Almanza; Biliana Alexandrova-Kabadjova; Serafin Martinez- Jaramillo. (2011). “Evolutionary Computational Techniques in Marketing.” In: (Sammut & Webb, 2011)
|
|
283
|
Evolutionary Feature Selection and Construction
|
353
|
A
|
|
Krzysztof Krawiec
|
|
EFSC ; Evolutionary constructive induction ; Evolutionary feature selection ; Evolutionary feature synthesis ; Genetic attribute construction ; Genetic feature selection
|
Constructive Induction ; Data Preparation ; Feature Selection
|
(Krzysztof Krawiec, 2011) ⇒ Krzysztof Krawiec. (2011). “Evolutionary Feature Selection and Construction.” In: (Sammut & Webb, 2011)
|
|
285
|
Evolutionary Fuzzy System
|
357
|
A
|
|
Carlos Kavka
|
|
|
|
(Carlos Kavka, 2011) ⇒ Carlos Kavka. (2011). “Evolutionary Fuzzy System.” In: (Sammut & Webb, 2011)
|
|
286
|
Evolutionary Games
|
362
|
A
|
|
Moshe Sipper
|
|
|
Evolutionary Computation ; Genetic Algorithms ; Genetic Programming
|
(Moshe Sipper, 2011) ⇒ Moshe Sipper. (2011). “Evolutionary Games.” In: (Sammut & Webb, 2011)
|
|
288
|
Evolutionary Kernel Learning
|
369
|
A
|
|
Christian Igel
|
|
|
Neuroevolution
|
(Christian Igel, 2011) ⇒ Christian Igel. (2011). “Evolutionary Kernel Learning.” In: (Sammut & Webb, 2011)
|
|
289
|
Evolutionary Robotics
|
373
|
A
|
|
Phil Husbands
|
|
Embodied evolutionary learning ; Evolution of agent behaviors ; Evolution of robot control
|
Co-Evolutionary Learning ; Evolutionary Artificial Neural Networks ; Genetic Algorithms ; Robot Learning
|
(Phil Husbands, 2011) ⇒ Phil Husbands. (2011). “Evolutionary Robotics.” In: (Sammut & Webb, 2011)
|
|
294
|
Expectation Maximization Clustering
|
382
|
A
|
|
Xin Jin; Jiawei Han
|
b
|
EM Clustering
|
Expectation Maximization Algorithm
|
([[Xin Jin; Jiawei Han, 2011b]]) ⇒ Xin Jin; Jiawei Han. (2011). “Expectation Maximization Clustering.” In: (Sammut & Webb, 2011)
|
|
295
|
Expectation Propagation
|
383
|
A
|
|
Tom Heskes
|
|
EP
|
Gaussian Distribution ; Gaussian Process ; Graphical Models
|
(Tom Heskes, 2011) ⇒ Tom Heskes. (2011). “Expectation Propagation.” In: (Sammut & Webb, 2011)
|
|
301
|
Explanation-Based Learning
|
388
|
A
|
|
Gerald DeJong; Shiau Hong Lim
|
|
Analytical learning ; Deductive learning ; Utility problem
|
Explanation-Based Learning for Planning ; Speedup Learning
|
(Gerald DeJong; Shiau Hong Lim, 2011) ⇒ Gerald DeJong; Shiau Hong Lim. (2011). “Explanation-Based Learning.” In: (Sammut & Webb, 2011)
|
|
302
|
Explanation-Based Learning for Planning
|
392
|
A
|
|
Subbarao Kambhampati; Sungwook Yoon
|
|
Explanation-based generalization for planning ; Speedup learning for planning
|
|
(Subbarao Kambhampati; Sungwook Yoon, 2011) ⇒ Subbarao Kambhampati; Sungwook Yoon. (2011). “Explanation-Based Learning for Planning.” In: (Sammut & Webb, 2011)
|
|
308
|
Feature Construction in Text Mining
|
397
|
A
|
|
Janez Brank; Dunja Mladenić, Marko Grobelnik
|
|
Feature generation in text mining
|
Document classification ; Feature Selection in Text Mining ; Kernel Methods ; Support Vector Machine ; Text Mining
|
([[Janez Brank; Dunja Mladenić, Marko Grobelnik, 2011]]) ⇒ Janez Brank; Dunja Mladenić, Marko Grobelnik. (2011). “Feature Construction in Text Mining.” In: (Sammut & Webb, 2011)
|
|
311
|
Feature Selection
|
402
|
A
|
|
Huan Liu
|
|
Attribute selection ; Feature reduction ; Feature subset selection ; Variable selection ; Variable subset selection
|
Classification ; Clustering ; Cross Validation ; Curse of Dimensionality ; Dimensionality Reduction ; Semi-Supervised Learning
|
(Huan Liu, 2011) ⇒ Huan Liu. (2011). “Feature Selection.” In: (Sammut & Webb, 2011)
|
|
312
|
Feature Selection in Text Mining
|
406
|
A
|
|
Dunja Mladenić
|
a
|
Dimensionality reduction on text via feature selection
|
|
(Dunja Mladenić, 2011a) ⇒ Dunja Mladenić. (2011). “Feature Selection in Text Mining.” In: (Sammut & Webb, 2011)
|
|
316
|
First-Order Logic
|
410
|
A
|
|
Peter A. Flach
|
a
|
First-order predicate calculus ; First-order predicate logic ; Predicate calculus ; Predicate logic ; Resolution
|
Abduction ; Entailment ; Higher-Order Logic ; Hypothesis Language ; Inductive Logic Programming ; Learning from Structured Data ; Logic Program ; Propositionalization ; Relational Data Mining
|
(Peter A. Flach, 2011a) ⇒ Peter A. Flach. (2011). “First-Order Logic.” In: (Sammut & Webb, 2011)
|
|
322
|
Formal Concept Analysis
|
416
|
A
|
|
Gemma C. Garriga
|
|
|
Clustering ; Constraint-Based Mining ; Frequent Itemset Mining
|
(Gemma C. Garriga, 2011) ⇒ Gemma C. Garriga. (2011). “Formal Concept Analysis.” In: (Sammut & Webb, 2011)
|
|
323
|
Frequent Itemset
|
417
|
A
|
|
Hannu Toivonen
|
d
|
Frequent set
|
Apriori Algorithm ; Association Rule ; Constraint-Based Mining ; Frequent Pattern
|
(Hannu Toivonen, 2011d) ⇒ Hannu Toivonen. (2011). “Frequent Itemset.” In: (Sammut & Webb, 2011)
|
|
324
|
Frequent Pattern
|
418
|
A
|
|
Hannu Toivonen
|
e
|
|
Apriori Algorithm ; Association Rule ; Basket Analysis ; Constraint-Based Mining ; Data Mining ; Frequent Itemset ; Graph Mining ; Knowledge Discovery in Databases ; Tree Mining
|
(Hannu Toivonen, 2011e) ⇒ Hannu Toivonen. (2011). “Frequent Pattern.” In: (Sammut & Webb, 2011)
|
|
330
|
Gaussian Distribution
|
425
|
A
|
|
Xinhua Zhang
|
c
|
Normal distribution
|
Gaussian Processes
|
(Xinhua Zhang, 2011c) ⇒ Xinhua Zhang. (2011). “Gaussian Distribution.” In: (Sammut & Webb, 2011)
|
|
331
|
Gaussian Processes
|
428
|
A
|
|
Novi Quadrianto; Kristian Kersting; Zhoa Xu
|
|
Expectation propagation ; Kernels ; Laplace estimate ; Nonparametric Bayesian
|
Dirichlet Process
|
(Novi Quadrianto; Kristian Kersting; Zhoa Xu, 2011) ⇒ Novi Quadrianto; Kristian Kersting; Zhoa Xu. (2011). “Gaussian Processes.” In: (Sammut & Webb, 2011)
|
|
332
|
Gaussian Process Reinforcement Learning
|
439
|
A
|
|
Yaakov Engel
|
|
|
|
(Yaakov Engel, 2011) ⇒ Yaakov Engel. (2011). “Gaussian Process Reinforcement Learning.” In: (Sammut & Webb, 2011)
|
|
334
|
Generalization
|
447
|
A
|
|
Claude Sammut
|
e
|
|
Classification ; Specialization ; Subsumption ; Logic of Generality
|
(Claude Sammut, 2011e) ⇒ Claude Sammut. (2011). “Generalization.” In: (Sammut & Webb, 2011)
|
|
335
|
Generalization Bounds
|
447
|
A
|
|
Mark Reid
|
|
Inequalities ; Sample complexity
|
Classification ; Empirical Risk Minimization ; Hypothesis Space ; Loss ; Pac Learning ; Regression ; Regularization ; Structural Risk Minimization ; VC Dimension
|
(Mark Reid, 2011) ⇒ Mark Reid. (2011). “Generalization Bounds.” In: (Sammut & Webb, 2011)
|
|
339
|
Generative and Discriminative Learning
|
454
|
A
|
|
Bin Liu; Geoffrey I. Webb
|
|
|
Evolutionary Feature Selection and Construction
|
([[Bin Liu; Geoffrey I. Webb, 2011]]) ⇒ Bin Liu; Geoffrey I. Webb. (2011). “Generative and Discriminative Learning.” In: (Sammut & Webb, 2011)
|
|
341
|
Genetic and Evolutionary Algorithms
|
456
|
A
|
|
Claude Sammut
|
f
|
|
Evolutionary Algorithms
|
(Claude Sammut, 2011f) ⇒ Claude Sammut. (2011). “Genetic and Evolutionary Algorithms.” In: (Sammut & Webb, 2011)
|
|
347
|
Genetic Programming
|
457
|
A
|
|
Moshe Sipper
|
|
|
|
(Moshe Sipper, 2011) ⇒ Moshe Sipper. (2011). “Genetic Programming.” In: (Sammut & Webb, 2011)
|
|
353
|
Grammatical Interface
|
458
|
A
|
|
Lorenza Saitta; Michele Sebag
|
|
Grammatical inference ; Grammar learning
|
|
(Lorenza Saitta; Michele Sebag, 2011) ⇒ Lorenza Saitta; Michele Sebag. (2011). “Grammatical Interface.” In: (Sammut & Webb, 2011)
|
|
355
|
Graph Clustering
|
459
|
A
|
|
Charu C. Aggarwal
|
|
Minimum cuts ; Network clustering ; Spectral clustering ; Structured data clustering
|
Group Detection ; Partitional Clustering
|
(Charu C. Aggarwal, 2011) ⇒ Charu C. Aggarwal. (2011). “Graph Clustering.” In: (Sammut & Webb, 2011)
|
|
356
|
Graph Kernels
|
467
|
A
|
|
Thomas Gartner; Tamas Horvath; Stefan Wrobel
|
|
|
|
(Thomas Gartner; Tamas Horvath; Stefan Wrobel, 2011) ⇒ Thomas Gartner; Tamas Horvath; Stefan Wrobel. (2011). “Graph Kernels.” In: (Sammut & Webb, 2011)
|
|
357
|
Graph Mining
|
469
|
A
|
|
Deepayan Chakrabarti
|
|
|
Graph Theory ; Greedy Search Approach of Graph Mining ; Inductive Database Search Approach of Graph Mining ; Kernel-Based Approach of Graph Mining ; Tree Mining
|
(Deepayan Chakrabarti, 2011) ⇒ Deepayan Chakrabarti. (2011). “Graph Mining.” In: (Sammut & Webb, 2011)
|
|
358
|
Graphical Models
|
471
|
A
|
|
Julian McAuley; Tiberio Caetano; Wray Buntine
|
|
|
Bayesian Network ; Expectation Propogation ; Hidden Markov Models ; Markov Random Field
|
([[Julian McAuley; Tiberio Caetano; Wray Buntine, 2011]]) ⇒ Julian McAuley; Tiberio Caetano; Wray Buntine. (2011). “Graphical Models.” In: (Sammut & Webb, 2011)
|
|
359
|
Graphs
|
479
|
A
|
|
Tommy R. Jensen
|
|
|
|
(Tommy R. Jensen, 2011) ⇒ Tommy R. Jensen. (2011). “Graphs.” In: (Sammut & Webb, 2011)
|
|
360
|
Greedy Search
|
482
|
A
|
|
Claude Sammut
|
g
|
|
Learning as Search ; Rule Learning
|
(Claude Sammut, 2011g) ⇒ Claude Sammut. (2011). “Greedy Search.” In: (Sammut & Webb, 2011)
|
|
361
|
Greedy Search Approach of Graph Mining
|
483
|
A
|
|
Lawrence Holder
|
|
|
Grammatical Inferences
|
(Lawrence Holder, 2011) ⇒ Lawrence Holder. (2011). “Greedy Search Approach of Graph Mining.” In: (Sammut & Webb, 2011)
|
|
362
|
Group Detection
|
489
|
A
|
|
Hossam Sharara; Lise Getoor
|
|
Communication detection ; Graph clustering ; Modularity detection
|
Graph Clustering ; Graph Mining
|
(Hossam Sharara; Lise Getoor, 2011) ⇒ Hossam Sharara; Lise Getoor. (2011). “Group Detection.” In: (Sammut & Webb, 2011)
|
|
370
|
Hidden Markov Models
|
493
|
A
|
|
Antal van den Bosch
|
|
HMM
|
Baum-Welch Algorithm ; Bayesian Methods ; Expectation-Maximization Algorithm ; Markov Process ; Viterbi Algorithm
|
(Antal van den Bosch, 2011) ⇒ Antal van den Bosch. (2011). “Hidden Markov Models.” In: (Sammut & Webb, 2011)
|
|
371
|
Hierarchical Reinforcement Learning
|
495
|
A
|
|
Bernhard Hengst
|
|
|
Associative Reinforcement Learning ; Average Reward Reinforcement Learning ; Bayesian Reinforcement Learning ; Credit Assignment ; Markov Decision Process ; Model-Based Reinforcement Learning ; Policy Gradient Methods ; Q Learning ; Reinforcement Learning ; Relational Reinforcement Learning ; Structured Induction ; Temporal Difference Learning
|
(Bernhard Hengst, 2011) ⇒ Bernhard Hengst. (2011). “Hierarchical Reinforcement Learning.” In: (Sammut & Webb, 2011)
|
|
373
|
High-Order Logic
|
502
|
A
|
|
John Lloyd
|
|
|
First-Order Logic ; Inductive Logic Programming ; Learning from Structured Data ; Propositional Logic
|
(John Lloyd, 2011) ⇒ John Lloyd. (2011). “High-Order Logic.” In: (Sammut & Webb, 2011)
|
|
379
|
Hopfield Network
|
507
|
A
|
|
Risto Miikkulainen
|
a
|
Recurrent associative memory
|
|
(Risto Miikkulainen, 2011a) ⇒ Risto Miikkulainen. (2011). “Hopfield Network.” In: (Sammut & Webb, 2011)
|
|
380
|
Hypothesis Language
|
507
|
A
|
|
Hendrik Blockeel
|
b
|
Representation language
|
First-Order Logic ; Hypothesis Space ; Inductive Logic Programming ; Observation Language
|
(Hendrik Blockeel, 2011b) ⇒ Hendrik Blockeel. (2011). “Hypothesis Language.” In: (Sammut & Webb, 2011)
|
|
381
|
Hypothesis Space
|
511
|
A
|
|
Hendrik Blockeel
|
c
|
Model Space
|
Bias Specification Language ; Hypothesis Language ; Inductive Logic Programming ; Observation Programming
|
(Hendrik Blockeel, 2011c) ⇒ Hendrik Blockeel. (2011). “Hypothesis Space.” In: (Sammut & Webb, 2011)
|
|
394
|
Incremental Learning
|
515
|
A
|
|
Paul E. Utgoff
|
|
|
Active Learning ; Cumulative Learning ; Online Learning
|
(Paul E. Utgoff, 2011) ⇒ Paul E. Utgoff. (2011). “Incremental Learning.” In: (Sammut & Webb, 2011)
|
|
396
|
Induction
|
519
|
A
|
|
James Cussens
|
|
|
Abduction ; Bayesian Statistics ; Classification ; Learning from Analogy ; No-Free Lunch Theorems ; Nonmonotonic Logic
|
(James Cussens, 2011) ⇒ James Cussens. (2011). “Induction.” In: (Sammut & Webb, 2011)
|
|
399
|
Inductive Database Approach to Graphmining
|
522
|
A
|
|
Stefan Kramer
|
|
|
|
(Stefan Kramer, 2011) ⇒ Stefan Kramer. (2011). “Inductive Database Approach to Graphmining.” In: (Sammut & Webb, 2011)
|
|
400
|
Inductive Inference
|
523
|
A
|
|
Sanjay Jain
|
|
|
Connections Between Inductive Inference and Machine Learning
|
(Sanjay Jain, 2011) ⇒ Sanjay Jain. (2011). “Inductive Inference.” In: (Sammut & Webb, 2011)
|
|
404
|
Inductive Logic Programming
|
529
|
A
|
|
Luc De Raedt
|
a
|
Learning in logic ; Multi-relational data mining ; Relational data mining ; Relational learning
|
Multi-Relational Data Mining
|
(Luc De Raedt, 2011a) ⇒ Luc De Raedt. (2011). “Inductive Logic Programming.” In: (Sammut & Webb, 2011)
|
|
405
|
Inductive Process Modeling
|
535
|
A
|
|
Ljupco Todorovski
|
b
|
Process-based modeling
|
Equation Discovery
|
(Ljupco Todorovski, 2011b) ⇒ Ljupco Todorovski. (2011). “Inductive Process Modeling.” In: (Sammut & Webb, 2011)
|
|
407
|
Inductive Programming
|
537
|
A
|
|
Pierre Flener; Ute Schmid
|
a
|
Example-based programming ; Inductive program synthesis ; Inductive synthesis ; Program synthesis from examples.
|
Explanation-Based Learning ; Inductive Logic Programming ; Programming by Demonstration ; Trace-Based Programming
|
(Pierre Flener; Ute Schmid, 2011a) ⇒ Pierre Flener; Ute Schmid. (2011). “Inductive Programming.” In: (Sammut & Webb, 2011)
|
|
409
|
Inductive Transfer
|
545
|
A
|
|
Ricardo Vilalta; Christopher Giraud-Carrier; Pavel Brazdil; Carlos Soares
|
|
Transfer of knowledge across domains
|
Metalearning
|
(Ricardo Vilalta; Christopher Giraud-Carrier; Pavel Brazdil; Carlos Soares, 2011) ⇒ Ricardo Vilalta; Christopher Giraud-Carrier; Pavel Brazdil; Carlos Soares. (2011). “Inductive Transfer.” In: (Sammut & Webb, 2011)
|
|
417
|
Instance-Based Learning
|
549
|
A
|
|
Eamonn Keogh
|
a
|
Analogical reasoning ; Case-based learning ; Memory-based ; Nearest Neighbor Methods, Non-parametric Methods
|
|
(Eamonn Keogh, 2011a) ⇒ Eamonn Keogh. (2011). “Instance-Based Learning.” In: (Sammut & Webb, 2011)
|
|
418
|
Instance-Based Reinforcement
|
550
|
A
|
|
William D. Smart
|
|
Kernel-based reinforcement learning
|
Curse of Dimensionality ; Instance-Based Learning ; Locally Weighted Learning ; Value-Function Approximation
|
(William D. Smart, 2011) ⇒ William D. Smart. (2011). “Instance-Based Reinforcement.” In: (Sammut & Webb, 2011)
|
|
425
|
Inverse Reinforcement Learning
|
554
|
A
|
|
Pieter Abbeel; Andrew Y. Ng
|
|
Intent recognition ; Inverse optimal control ; Plan recognition
|
Apprenticeship Learning ; Reinforcement Learning ; Reward Shaping
|
([[Pieter Abbeel; Andrew Y. Ng, 2011]]) ⇒ Pieter Abbeel; Andrew Y. Ng. (2011). “Inverse Reinforcement Learning.” In: (Sammut & Webb, 2011)
|
|
434
|
k-Armed Bandit
|
561
|
A
|
|
Shie Mannor
|
|
Multi-armed bandit ; Multi-armed bandit problem
|
Active Learning ; Associative Bandit Problems ; Dynamic Programming ; Machine Learning in Games ; Markov Processes ; PAC Learning ; Reinforcement Learning
|
(Shie Mannor, 2011) ⇒ Shie Mannor. (2011). “k-Armed Bandit.” In: (Sammut & Webb, 2011)
|
|
435
|
K-Means Clustering
|
563
|
A
|
|
Xin Jin; Jiawei Han
|
c
|
|
|
([[Xin Jin; Jiawei Han, 2011c]]) ⇒ Xin Jin; Jiawei Han. (2011). “K-Means Clustering.” In: (Sammut & Webb, 2011)
|
|
436
|
K-Medoids Clustering
|
564
|
A
|
|
Xin Jin; Jiawei Han
|
d
|
|
|
([[Xin Jin; Jiawei Han, 2011d]]) ⇒ Xin Jin; Jiawei Han. (2011). “K-Medoids Clustering.” In: (Sammut & Webb, 2011)
|
|
437
|
K-Way Spectral Clustering
|
565
|
A
|
|
Xin Jin; Jiawei Han
|
e
|
|
|
([[Xin Jin; Jiawei Han, 2011e]]) ⇒ Xin Jin; Jiawei Han. (2011). “K-Way Spectral Clustering.” In: (Sammut & Webb, 2011)
|
|
440
|
Kernel Methods
|
566
|
A
|
|
Xinhua Zhang
|
d
|
|
Principal Component Analysis ; Support Vector Machine
|
(Xinhua Zhang, 2011d) ⇒ Xinhua Zhang. (2011). “Kernel Methods.” In: (Sammut & Webb, 2011)
|
|
455
|
Lazy Learning
|
|
A
|
|
Geoffrey I. Webb
|
d
|
|
Eager Learning ; Instance-Based Learning ; Locally Weighted Regression for Control ; Online Learning
|
(Geoffrey I. Webb, 2011d) ⇒ Geoffrey I. Webb. (2011). “Lazy Learning.” In: (Sammut & Webb, 2011)
|
|
456
|
Learning as Search
|
572
|
A
|
|
Claude Sammut
|
h
|
|
Decision Tree Learning ; Generalization ; Induction ; Instance-Based Learning ; Logic of Generality ; Rule Learning ; Subsumption
|
(Claude Sammut, 2011h) ⇒ Claude Sammut. (2011). “Learning as Search.” In: (Sammut & Webb, 2011)
|
|
462
|
Learning Curves in Machine Learning
|
577
|
A
|
|
Claudia Perlich
|
|
Error curve ; Experience curve ; Improvement curve ; Training Curve
|
Artificial Neural Networks ; Computational Learning Theory ; Decision Tree ; Generalization Performance ; Logistic Regression ; Overfitting
|
(Claudia Perlich, 2011) ⇒ Claudia Perlich. (2011). “Learning Curves in Machine Learning.” In: (Sammut & Webb, 2011)
|
|
467
|
Learning from Structured Data
|
580
|
A
|
|
Tamas Horvath; Stefan Wrobel
|
|
Learning from complex data ; Learning from non-propositional data ; Learning from nonvectorial data
|
Hypothesis Language ; Inductive Logic Programming ; Observation Language ; Statistical Relational Learning ; Structured Induction
|
(Tamas Horvath; Stefan Wrobel, 2011) ⇒ Tamas Horvath; Stefan Wrobel. (2011). “Learning from Structured Data.” In: (Sammut & Webb, 2011)
|
|
468
|
Learning Graphical Models
|
584
|
A
|
|
Kevin B. Korb
|
|
Bayesian model averaging ; Causal discovery ; Dynamic bayesian network ; Learning bayesian networks
|
Dimensionality ; Feature Selection ; Graphical Models ; Hidden Markov Models
|
(Kevin B. Korb, 2011) ⇒ Kevin B. Korb. (2011). “Learning Graphical Models.” In: (Sammut & Webb, 2011)
|
|
471
|
Learning Models of Biological Sequences
|
590
|
A
|
|
William Stafford Noble; Christina Leslie
|
|
|
|
(William Stafford Noble; Christina Leslie, 2011) ⇒ William Stafford Noble; Christina Leslie. (2011). “Learning Models of Biological Sequences.” In: (Sammut & Webb, 2011)
|
|
482
|
Linear Discriminant
|
601
|
A
|
|
Novi Quadrianto, Wray L. Buntine
|
a
|
|
Regression ; Support Vector Machines
|
(Novi Quadrianto, Wray L. Buntine, 2011a) ⇒ Novi Quadrianto, Wray L. Buntine. (2011). “Linear Discriminant.” In: (Sammut & Webb, 2011)
|
|
483
|
Linear Regression
|
603
|
A
|
|
Novi Quadrianto, Wray L. Buntine
|
b
|
|
Correlation Matrix ; Gaussian Processes ; Regression
|
(Novi Quadrianto, Wray L. Buntine, 2011b) ⇒ Novi Quadrianto, Wray L. Buntine. (2011). “Linear Regression.” In: (Sammut & Webb, 2011)
|
|
487
|
Link Mining and Link Discovery
|
606
|
A
|
|
Lise Getoor
|
|
Link analysis ; Network analysis
|
Collective Classification ; Entity Resolution ; Graph Clustering ; Graph Mining ; Group Detection ; Inductive Logic Programming ; Link Prediction ; Relational Learning
|
(Lise Getoor, 2011) ⇒ Lise Getoor. (2011). “Link Mining and Link Discovery.” In: (Sammut & Webb, 2011)
|
|
488
|
Link Prediction
|
609
|
A
|
|
Galileo Namata; Lise Getoor
|
|
Edge prediction ; Relationship extraction
|
Graph Mining ; Statistical Relational Learning
|
(Galileo Namata; Lise Getoor, 2011) ⇒ Galileo Namata; Lise Getoor. (2011). “Link Prediction.” In: (Sammut & Webb, 2011)
|
|
493
|
Locally Sensitive Hashing Based Clustering
|
613
|
A
|
|
Xin Jin; Jiawei Han
|
f
|
|
|
([[Xin Jin; Jiawei Han, 2011f]]) ⇒ Xin Jin; Jiawei Han. (2011). “Locally Sensitive Hashing Based Clustering.” In: (Sammut & Webb, 2011)
|
|
494
|
Locally Weighted Learning
|
613
|
A
|
|
Jo-Anne Ting; Sethu Vijayakumar; Stefan Schaal
|
|
Kernel shaping ; Lazy learning ; Local distance metric adaptation ; Locally weighted learning ; LWPR ; LWR ; Nonstationary kernels supersmoothing
|
Bias and Variance ; Dimensionality Reduction ; Incremental Learning ; Kernel Function ; Kernel Methods ; Lazy Learning ; Linear Regression ; Mixture Models ; Online Learning ; Overfitting ; Radial Basis Functions ; Regression ; Supervised Learning
|
(Jo-Anne Ting; Sethu Vijayakumar; Stefan Schaal, 2011) ⇒ Jo-Anne Ting; Sethu Vijayakumar; Stefan Schaal. (2011). “Locally Weighted Learning.” In: (Sammut & Webb, 2011)
|
|
495
|
Logic of Generality
|
624
|
A
|
|
Luc De Raedt
|
b
|
Generality and logic ; Induction as inverted deduction ; Inductive inference rules ; Is more general than ; Is more specific than ; Specialization
|
|
(Luc De Raedt, 2011b) ⇒ Luc De Raedt. (2011). “Logic of Generality.” In: (Sammut & Webb, 2011)
|
|
511
|
Machine learning and Game Playing
|
633
|
A
|
|
Johannes Furnkranz
|
d
|
|
Samuel's Checkers Players ; TD-Gammon
|
(Johannes Furnkranz, 2011d) ⇒ Johannes Furnkranz. (2011). “Machine learning and Game Playing.” In: (Sammut & Webb, 2011)
|
|
512
|
Machine Learning for IT Security
|
637
|
A
|
|
Philip K. Chan
|
|
|
Association ; Classification
|
(Philip K. Chan, 2011) ⇒ Philip K. Chan. (2011). “Machine Learning for IT Security.” In: (Sammut & Webb, 2011)
|
|
513
|
Manhattan Distance
|
639
|
A
|
|
Susan Craw
|
c
|
City block distance ; L1-distance ; 1-norm distance' Taxi-cab norm distance
|
Case-Based Learning ; Nearest Neighbor
|
(Susan Craw, 2011c) ⇒ Susan Craw. (2011). “Manhattan Distance.” In: (Sammut & Webb, 2011)
|
|
518
|
Markov Chain Monte Carlo
|
639
|
A
|
|
Claude Sammut
|
i
|
MCMC
|
Bayesian Network ; Graphical Models ; Learning Graphical Models ; Markov Chain
|
(Claude Sammut, 2011i) ⇒ Claude Sammut. (2011). “Markov Chain Monte Carlo.” In: (Sammut & Webb, 2011)
|
|
519
|
Markov Decision Processes
|
642
|
A
|
|
William Uther
|
a
|
Policy search
|
Bayesian Network ; Curse of Dimensionality ; Monte-Carol Simulation ; Partially Observable Markov Decision Processes ; Reinforcement Learning ; Temporal Difference Learning
|
(William Uther, 2011a) ⇒ William Uther. (2011). “Markov Decision Processes.” In: (Sammut & Webb, 2011)
|
|
527
|
Maximum Entropy Models for Natural Language Processing
|
647
|
A
|
|
Adwait Ratnaparkhi
|
|
Log-linear models ; Maxent models ; Statistical natural language processing
|
|
(Adwait Ratnaparkhi, 2011) ⇒ Adwait Ratnaparkhi. (2011). “Maximum Entropy Models for Natural Language Processing.” In: (Sammut & Webb, 2011)
|
|
533
|
Mean Shift
|
652
|
A
|
|
Xin Jin; Jiawei Han
|
g
|
|
|
([[Xin Jin; Jiawei Han, 2011g]]) ⇒ Xin Jin; Jiawei Han. (2011). “Mean Shift.” In: (Sammut & Webb, 2011)
|
|
535
|
Measurement Scales
|
653
|
A
|
|
Ying Yang
|
b
|
|
|
(Ying Yang, 2011b) ⇒ Ying Yang. (2011). “Measurement Scales.” In: (Sammut & Webb, 2011)
|
|
536
|
Medicine: Application of Machine Learning
|
654
|
A
|
|
Katharina Morik
|
|
|
Class Imbalance Problem ; Classification ; Classifier Systems ; Cost-Sensitive Learning ; Decision Trees ; Feature Selection ; Inductive Logic Programming ; ROC Analysis ; Support Vector Machine ; Time Series
|
(Katharina Morik, 2011) ⇒ Katharina Morik. (2011). “Medicine: Application of Machine Learning.” In: (Sammut & Webb, 2011)
|
|
543
|
Metaheuristic
|
662
|
A
|
|
Marco Dorigo; Mauro Birattari
|
|
|
|
(Marco Dorigo; Mauro Birattari, 2011) ⇒ Marco Dorigo; Mauro Birattari. (2011). “Metaheuristic.” In: (Sammut & Webb, 2011)
|
|
544
|
Metalearning
|
662
|
A
|
|
Pavel Brazdil, Ricardo Vilalta; Christophe Giraud- Carrier; Carlos Soares
|
|
Adaptive learning ; Dynamic selection of bias ; Learning to learn ; Ranking learning methods ; self-adaptive systems
|
Inductive Transfer
|
(Pavel Brazdil, Ricardo Vilalta; Christophe Giraud- Carrier; Carlos Soares, 2011) ⇒ Pavel Brazdil, Ricardo Vilalta; Christophe Giraud- Carrier; Carlos Soares. (2011). “Metalearning.” In: (Sammut & Webb, 2011)
|
|
546
|
Minimum Description Length Principle
|
666
|
A
|
|
Jorma Rissanen
|
|
Information theory ; MDL ; Minimum encoding inference
|
Minimum Message Length
|
(Jorma Rissanen, 2011) ⇒ Jorma Rissanen. (2011). “Minimum Description Length Principle.” In: (Sammut & Webb, 2011)
|
|
548
|
Minimum Message Length
|
668
|
A
|
|
Rohan A. Baxter
|
a
|
Minimum encoding inference
|
Bayesian Methods ; Inductive Inference ; Minimum Description Length
|
(Rohan A. Baxter, 2011a) ⇒ Rohan A. Baxter. (2011). “Minimum Message Length.” In: (Sammut & Webb, 2011)
|
|
549
|
Missing Attribute Values
|
674
|
A
|
|
Ivan Bruha
|
|
Missing values ; Unknown attribute values ; Unknown values
|
|
(Ivan Bruha, 2011) ⇒ Ivan Bruha. (2011). “Missing Attribute Values.” In: (Sammut & Webb, 2011)
|
|
553
|
Mixture Model
|
680
|
A
|
|
Rohan A. Baxter
|
b
|
Finite mixture model ; Latent class model ; Mixture distribution ; Mixture modeling
|
Density-Based Clustering ; Density Estimation ; Gaussian Distribution ; Graphical Models ; Learning Graphical Models ; Markov Chain Monte Carlo ; Model-Based Clustering ; Unsupervised Learning
|
(Rohan A. Baxter, 2011b) ⇒ Rohan A. Baxter. (2011). “Mixture Model.” In: (Sammut & Webb, 2011)
|
|
556
|
Model Evaluation
|
683
|
A
|
|
Geoffrey I. Webb
|
e
|
|
Algorithm Evaluation ; Overfitting ; ROC Analysis
|
(Geoffrey I. Webb, 2011e) ⇒ Geoffrey I. Webb. (2011). “Model Evaluation.” In: (Sammut & Webb, 2011)
|
|
559
|
Model Trees
|
684
|
A
|
|
Luis Torgo
|
|
Functional trees ; Linear regression trees ; Piecewise linear models
|
Random Forests ; Regression ; Regression Trees ; Supervised Learning ; Training Sample
|
|
|
560
|
Model-Based Clustering
|
686
|
A
|
|
Arindam Banerjee; Hanhuai Shan
|
|
|
|
(Arindam Banerjee; Hanhuai Shan, 2011) ⇒ Arindam Banerjee; Hanhuai Shan. (2011). “Model-Based Clustering.” In: (Sammut & Webb, 2011)
|
|
562
|
Model-Based Reinforcement Learning
|
690
|
A
|
|
Soumya Ray; Prasad Tadepalli
|
|
Indirect reinforcement learning
|
Adaptive Real-Time Dynamic Programming ; Autonomous Helicopter Flight Using Reinforcement Learning ; Bayesian Reinforcement Learning ; Efficient Exploration in Reinforcement Learning ; Symbolic Dynamic Programming
|
(Soumya Ray; Prasad Tadepalli, 2011) ⇒ Soumya Ray; Prasad Tadepalli. (2011). “Model-Based Reinforcement Learning.” In: (Sammut & Webb, 2011)
|
|
569
|
Multi-Agent Learning I: Problem Definition
|
694
|
A
|
|
Yoav Shoham; Rob Powers
|
|
|
|
(Yoav Shoham; Rob Powers, 2011) ⇒ Yoav Shoham; Rob Powers. (2011). “Multi-Agent Learning I: Problem Definition.” In: (Sammut & Webb, 2011)
|
|
573
|
MultiBoosting
|
699
|
A
|
|
Geoffrey I. Webb
|
f
|
|
AdaBoost ; Bagging ; Ensemble Learning ; Multistrategy Ensemble Learning
|
(Geoffrey I. Webb, 2011f) ⇒ Geoffrey I. Webb. (2011). “MultiBoosting.” In: (Sammut & Webb, 2011)
|
|
575
|
Multi-Instance Learning
|
701
|
A
|
|
Soumya Ray; Stephen Scott; Hendrik Blockeel
|
|
Multiple-instance learning
|
Artificial Neural Network ; Attribute ; Classification ; Data Set ; Decision Tree ; Expectation Maximization ; First-Order Rule ; Gaussian Distribution ; Inductive Logic Programming ; Kernel Methods ; Linear Regression ; Nearest Neighbor ; Noise ; On-Line Learning ; PAC Learning ; Relational Learning ; Supervised Learning
|
([[Soumya Ray; Stephen Scott; Hendrik Blockeel, 2011]]) ⇒ Soumya Ray; Stephen Scott; Hendrik Blockeel. (2011). “Multi-Instance Learning.” In: (Sammut & Webb, 2011)
|
|
583
|
Naïve Bayes
|
713
|
A
|
|
Geoffrey I. Webb
|
g
|
Idiot's bayes ; Simple bayes
|
Bayes Rule ; Bayesian Method ; Bayesian Networks ; Semi-Naïve Bayesian Learning
|
(Geoffrey I. Webb, 2011g) ⇒ Geoffrey I. Webb. (2011). “Naïve Bayes.” In: (Sammut & Webb, 2011)
|
|
586
|
Nearest Neighbor
|
714
|
A
|
|
Eamonn Keogh
|
b
|
Closest point ; Most similar point
|
|
(Eamonn Keogh, 2011b) ⇒ Eamonn Keogh. (2011). “Nearest Neighbor.” In: (Sammut & Webb, 2011)
|
|
596
|
Neuroevolution
|
716
|
A
|
|
Risto Miikkulainen
|
b
|
Evolving neural networks ; Genetic neural networks
|
Evolutionary Algorithms ; Reinforcement Learning
|
(Risto Miikkulainen, 2011b) ⇒ Risto Miikkulainen. (2011). “Neuroevolution.” In: (Sammut & Webb, 2011)
|
|
597
|
Neuron
|
720
|
A
|
|
Risto Miikkulainen
|
c
|
Node ; Unit
|
|
(Risto Miikkulainen, 2011c) ⇒ Risto Miikkulainen. (2011). “Neuron.” In: (Sammut & Webb, 2011)
|
|
606
|
Nonstandard Criteria in Evolutionary Learning
|
722
|
A
|
|
Michele Sebag
|
|
|
|
(Michele Sebag, 2011) ⇒ Michele Sebag. (2011). “Nonstandard Criteria in Evolutionary Learning.” In: (Sammut & Webb, 2011)
|
|
616
|
Observation Language
|
733
|
A
|
|
Hendrik Blockeel
|
d
|
Instance language
|
Hypothesis Language ; Inductive Logic Programming ; Relational Learning
|
(Hendrik Blockeel, 2011d) ⇒ Hendrik Blockeel. (2011). “Observation Language.” In: (Sammut & Webb, 2011)
|
|
617
|
Occam's Razor
|
736
|
A
|
|
Geoffrey I. Webb
|
h
|
Ockham's razor
|
|
(Geoffrey I. Webb, 2011h) ⇒ Geoffrey I. Webb. (2011). “Occam's Razor.” In: (Sammut & Webb, 2011)
|
|
621
|
Online Learning
|
736
|
A
|
|
Peter Auer
|
|
Mistake-bounded learning ; Perception ; Prediction with expert advice ; Sequential prediction
|
Incremental Learning
|
(Peter Auer, 2011) ⇒ Peter Auer. (2011). “Online Learning.” In: (Sammut & Webb, 2011)
|
|
630
|
Overfitting
|
744
|
A
|
|
Geoffrey I. Webb
|
i
|
Overtraining
|
Bias and Variance ; Minimum Description Length ; Minimum Message Length ; Pruning ; Regularization
|
(Geoffrey I. Webb, 2011i) ⇒ Geoffrey I. Webb. (2011). “Overfitting.” In: (Sammut & Webb, 2011)
|
|
634
|
PAC Learning
|
745
|
A
|
|
Thomas Zeugmann
|
c
|
Distribution-free learning ; Probably approximately correct learning ; PAC identification
|
Statistical Machine Learning ; Stochastic Finite Learning ; VC Dimension
|
(Thomas Zeugmann, 2011c) ⇒ Thomas Zeugmann. (2011). “PAC Learning.” In: (Sammut & Webb, 2011)
|
|
638
|
Partially Observable Markov Decision Processes
|
754
|
A
|
|
Pascal Poupart
|
|
POMDPs ; Belief state Markov decision processes ; Dynamic decision networks ; Dual control
|
Markov Decision Process
|
(Pascal Poupart, 2011) ⇒ Pascal Poupart. (2011). “Partially Observable Markov Decision Processes.” In: (Sammut & Webb, 2011)
|
|
639
|
Particle Swarm Optimization
|
760
|
A
|
|
James Kennedy
|
|
|
|
(James Kennedy, 2011) ⇒ James Kennedy. (2011). “Particle Swarm Optimization.” In: (Sammut & Webb, 2011)
|
|
640
|
Partitional Clustering
|
766
|
A
|
|
Xin Jin, Jiawei Han
|
a
|
|
|
([[Xin Jin, Jiawei Han, 2011a]]) ⇒ Xin Jin, Jiawei Han. (2011). “Partitional Clustering.” In: (Sammut & Webb, 2011)
|
|
641
|
Phase Transitions in Machine Learning
|
767
|
A
|
|
Lorenza Saitta; Michelle Sebag
|
|
Statistical Physics of learning ; Threshold phenomena in learning ; Typical complexity of learning
|
|
(Lorenza Saitta; Michelle Sebag, 2011) ⇒ Lorenza Saitta; Michelle Sebag. (2011). “Phase Transitions in Machine Learning.” In: (Sammut & Webb, 2011)
|
|
646
|
Policy Gradient Methods
|
774
|
A
|
|
Jan Peters; J. Andrew Bagnell
|
|
Policy search
|
Markov Decision Process ; Reinforcement Learning ; Value Function Approximation
|
(Jan Peters; J. Andrew Bagnell, 2011) ⇒ Jan Peters; J. Andrew Bagnell. (2011). “Policy Gradient Methods.” In: (Sammut & Webb, 2011)
|
|
649
|
POS Tagging
|
776
|
A
|
|
Walter Daelemans
|
|
Grammatical tagging ; Morphosyntactic disambiguation ; Part of speech tagging ; Tagging
|
Classification ; Clustering ; Decision Trees ; ILP ; Information Extraction ; Lazy Learning ; Maxent Models ; Text Categorization ; Text Mining
|
(Walter Daelemans, 2011) ⇒ Walter Daelemans. (2011). “POS Tagging.” In: (Sammut & Webb, 2011)
|
|
654
|
Posterior Probability
|
780
|
A
|
|
Geoffrey I. Webb
|
j
|
Posterior
|
Bayesian Methods
|
(Geoffrey I. Webb, 2011j) ⇒ Geoffrey I. Webb. (2011). “Posterior Probability.” In: (Sammut & Webb, 2011)
|
|
657
|
Precision
|
780
|
A
|
|
Kai Ming Ting
|
c
|
Positive predictive value
|
Precision and Recall
|
(Kai Ming Ting, 2011c) ⇒ Kai Ming Ting. (2011). “Precision.” In: (Sammut & Webb, 2011)
|
|
658
|
Precision and Recall
|
781
|
A
|
|
Kai Ming Ting
|
|
|
Confusion Matrix
|
|
|
664
|
Prior Probability
|
782
|
A
|
|
Geoffrey I. Webb
|
k
|
Prior
|
Bayesian Methods
|
(Geoffrey I. Webb, 2011k) ⇒ Geoffrey I. Webb. (2011). “Prior Probability.” In: (Sammut & Webb, 2011)
|
|
667
|
Predictive Techniques in Software Engineering
|
782
|
A
|
|
Jelber Sayyad Shirabad
|
|
Predictive software models
|
|
(Jelber Sayyad Shirabad, 2011) ⇒ Jelber Sayyad Shirabad. (2011). “Predictive Techniques in Software Engineering.” In: (Sammut & Webb, 2011)
|
|
668
|
Preference Learning
|
789
|
A
|
|
Johannes Furnkranz; Eyke Hullermeier
|
|
Learning from preferences
|
Classification ; Meta-Learning ; Rank Correlation
|
(Johannes Furnkranz; Eyke Hullermeier, 2011) ⇒ Johannes Furnkranz; Eyke Hullermeier. (2011). “Preference Learning.” In: (Sammut & Webb, 2011)
|
|
674
|
Privacy-Related Aspects and Techniques
|
795
|
A
|
|
Stan Matwin
|
|
Privacy-preserving data mining
|
|
(Stan Matwin, 2011) ⇒ Stan Matwin. (2011). “Privacy-Related Aspects and Techniques.” In: (Sammut & Webb, 2011)
|
|
675
|
Probabilistic Context-Free Grammars
|
802
|
A
|
|
Yasubumi Sakakibara
|
|
PCFG
|
|
(Yasubumi Sakakibara, 2011) ⇒ Yasubumi Sakakibara. (2011). “Probabilistic Context-Free Grammars.” In: (Sammut & Webb, 2011)
|
|
679
|
Programming by Demonstration
|
805
|
A
|
|
Pierre Flener; Ute Schmid
|
b
|
Programming by example
|
Inductive Programming ; Trace-Based Programming
|
(Pierre Flener; Ute Schmid, 2011b) ⇒ Pierre Flener; Ute Schmid. (2011). “Programming by Demonstration.” In: (Sammut & Webb, 2011)
|
|
682
|
Protective Clustering
|
806
|
A
|
|
Cecilia M. Procopiuc
|
|
Local feature selection ; Subspace clustering
|
Clustering ; Curse of Dimensionality ; Data Mining ; Dimensionality Reduction ; k-Means Clustering ; Kernel Methods ; Principal Component Analysis
|
(Cecilia M. Procopiuc, 2011) ⇒ Cecilia M. Procopiuc. (2011). “Protective Clustering.” In: (Sammut & Webb, 2011)
|
|
686
|
Propositionalization
|
812
|
A
|
|
Nicolas Lachiche
|
|
|
Attribute ; Feature Construction ; Feature Selection ; Inductive Logic Programming ; Language Bias ; Learning from Structured Data ; Multi-Instance learning ; Relational Learning ; Statistical Relational Learning
|
(Nicolas Lachiche, 2011) ⇒ Nicolas Lachiche. (2011). “Propositionalization.” In: (Sammut & Webb, 2011)
|
|
687
|
Pruning
|
817
|
A
|
|
Johannes Furnkranz
|
e
|
|
Decision Tree ; Pre-Pruning ; Post-Pruning ; Regularization ; Rule Learning
|
(Johannes Furnkranz, 2011e) ⇒ Johannes Furnkranz. (2011). “Pruning.” In: (Sammut & Webb, 2011)
|
|
690
|
Q-Learning
|
819
|
A
|
|
Peter Stone
|
a
|
|
Reinforcement Learning ; Temporal Difference Learning
|
(Peter Stone, 2011a) ⇒ Peter Stone. (2011). “Q-Learning.” In: (Sammut & Webb, 2011)
|
|
693
|
Quality Threshold Clustering
|
819
|
A
|
|
Xin Jin; Jiawei Han
|
h
|
QT Clustering
|
|
([[Xin Jin; Jiawei Han, 2011h]]) ⇒ Xin Jin; Jiawei Han. (2011). “Quality Threshold Clustering.” In: (Sammut & Webb, 2011)
|
|
695
|
Query-Based Learning
|
820
|
A
|
|
Sanjay Jain; Frank Stephan
|
b
|
|
|
(Sanjay Jain; Frank Stephan, 2011b) ⇒ Sanjay Jain; Frank Stephan. (2011). “Query-Based Learning.” In: (Sammut & Webb, 2011)
|
|
699
|
Radial Basis Function Networks
|
823
|
A
|
|
M.D. Buhmann
|
|
Networks with kernel functions ; Radial basis function approximation ; Radial basis function neural networks ; Regularization networks
|
Artificial Neural Networks ; Regularization ; Support Vector Machines
|
(M.D. Buhmann, 2011) ⇒ M.D. Buhmann. (2011). “Radial Basis Function Networks.” In: (Sammut & Webb, 2011)
|
|
712
|
Recommender Systems
|
829
|
A
|
|
Perm Melville; Vikas Sindhwani
|
|
|
|
(Perm Melville; Vikas Sindhwani, 2011) ⇒ Perm Melville; Vikas Sindhwani. (2011). “Recommender Systems.” In: (Sammut & Webb, 2011)
|
|
717
|
Regression
|
838
|
A
|
|
Novi Quadrianto; Wray I. Buntine
|
|
|
Gaussian Processes ; Linear Regression ; Support Vector Machines
|
(Novi Quadrianto; Wray I. Buntine, 2011) ⇒ Novi Quadrianto; Wray I. Buntine. (2011). “Regression.” In: (Sammut & Webb, 2011)
|
|
718
|
Regression Trees
|
842
|
A
|
|
Luis Torgo
|
|
Decision trees for regression ; Piecewise constant models ; Tree-based regression
|
Model Trees ; Out-of-the-Sample ; Random Forests ; Regression ; Supervised Learning ; Training Sample
|
(Luis Torgo, 2011) ⇒ Luis Torgo. (2011). “Regression Trees.” In: (Sammut & Webb, 2011)
|
|
719
|
Regularization
|
845
|
A
|
|
Xinhua Zhang
|
e
|
|
Minimum description Length ; Model Evaluation ; Occam's Razor ; Overfitting ; Statistical Learning Theory ; Support Vector Machines ; VC Dimension
|
(Xinhua Zhang, 2011e) ⇒ Xinhua Zhang. (2011). “Regularization.” In: (Sammut & Webb, 2011)
|
|
721
|
Reinforcement Learning
|
849
|
A
|
|
Peter Stone
|
b
|
|
Associative Reinforcement Learning ; Autonomous Helicopter Flight Using Reinforcement Learning ; Average-Reward Reinforcement Learning ; Bayesian Reinforcement Learning ; Dynamic Programming ; Efficient Exploration in Reinforcement Learning ; Gaussian Process reinforcement Learning ; Hierarchical Reinforcement Learning ; Instance-Based Reinforcement Learning ; Inverse Reinforcement Learning ; Least Squares Reinforcement Learning Methods ; Model-Based Reinforcement Learning ; Policy Gradient Methods ; Q-Learning ; Relational Reinforcement Learning ; Reward Shaping ; Symbolic Dynamic Programming ; Temporal Difference Learning ; Value Function Approximation
|
(Peter Stone, 2011b) ⇒ Peter Stone. (2011). “Reinforcement Learning.” In: (Sammut & Webb, 2011)
|
|
726
|
Relational Learning
|
851
|
A
|
|
Jan Struyf; Hendrik Blockeel
|
|
|
Inductive Logic Programming ; Multi-Relational Data Mining
|
([[Jan Struyf; Hendrik Blockeel, 2011]]) ⇒ Jan Struyf; Hendrik Blockeel. (2011). “Relational Learning.” In: (Sammut & Webb, 2011)
|
|
728
|
Relational Reinforcement Learning
|
857
|
A
|
|
Kurt Driessens
|
|
Learning in worlds with objects ; Reinforcement learning in structured domains
|
Hierarchical Reinforcement Learning ; Inductive Logic Programming ; Model-Based Reinforcement Learning ; Policy Iteration ; Q-Learning ; Reinforcement Learning ; Relational Learning ; Symbolic Dynamic Programming ; Temporal Difference
|
(Kurt Driessens, 2011) ⇒ Kurt Driessens. (2011). “Relational Reinforcement Learning.” In: (Sammut & Webb, 2011)
|
|
733
|
Reservoir Computing
|
863
|
A
|
|
Risto Miikkulainen
|
d
|
Echo state network ; Liquid state machine
|
|
(Risto Miikkulainen, 2011d) ⇒ Risto Miikkulainen. (2011). “Reservoir Computing.” In: (Sammut & Webb, 2011)
|
|
738
|
Reward Shaping
|
863
|
A
|
|
Eric Wiewiora
|
|
Heuristic rewards ; Reward selection
|
Reinforcement Learning
|
(Eric Wiewiora, 2011) ⇒ Eric Wiewiora. (2011). “Reward Shaping.” In: (Sammut & Webb, 2011)
|
|
740
|
Robot Learning
|
865
|
A
|
|
Jan Peters; Russ Tedrake; Nicholas Roy; Jun Morimoto;
|
|
|
Behavioral Cloning ; Inverse Reinforcement Learning ; Policy Search ; Reinforcement Learning ; Value Approximation
|
(Jan Peters; Russ Tedrake; Nicholas Roy; Jun Morimoto;, 2011) ⇒ Jan Peters; Russ Tedrake; Nicholas Roy; Jun Morimoto;. (2011). “Robot Learning.” In: (Sammut & Webb, 2011)
|
|
741
|
ROC Analysis
|
869
|
A
|
|
Peter A. Flach
|
b
|
Receiver operating characteristic analysis
|
Accuracy ; Class Imbalance Problem ; Classification ; Confusion Matrix ; Cost-Sensitive Learning ; Error Rate ; False Negative ; False Positive ; Gaussian Distribution ; Posterior Probability ; Precision ; Prior Probability ; Recall ; Sensitivity ; Specificity ; True Negative ; True Positive
|
(Peter A. Flach, 2011b) ⇒ Peter A. Flach. (2011). “ROC Analysis.” In: (Sammut & Webb, 2011)
|
|
746
|
Rule Learning
|
875
|
A
|
|
Johannes Furnkranz
|
f
|
AQ ; Covering algorithm ; CN2 ; Foil ; Laplace estimate ; m-estimate ; OPUS ; RIPPER
|
Apriori Algorithm ; Association Rule ; Decision List ; Decision Trees ; Subgroup Discovery
|
(Johannes Furnkranz, 2011f) ⇒ Johannes Furnkranz. (2011). “Rule Learning.” In: (Sammut & Webb, 2011)
|
|
753
|
Search Engines: Application of ML
|
882
|
A
|
|
Eric Martin
|
|
|
Bayesian Methods ; Classification ; Covariance Matrix ; Rule Learning ; Text Mining
|
(Eric Martin, 2011) ⇒ Eric Martin. (2011). “Search Engines: Application of ML.” In: (Sammut & Webb, 2011)
|
|
755
|
Self-Organizing Maps
|
886
|
A
|
|
Samuel Kaski
|
|
Kohonen maps ; Self-Organizing feature maps ; SOM
|
ART ; Competitive Learning ; Dimensionality Reduction ; Hebbian Learning ; K-means Clustering ; Learning Vector Quantization
|
(Samuel Kaski, 2011) ⇒ Samuel Kaski. (2011). “Self-Organizing Maps.” In: (Sammut & Webb, 2011)
|
|
757
|
Semi-Naïve Bayesian Learning
|
889
|
A
|
|
Fei Zheng; Geoffrey I. Webb
|
b
|
|
Bayesian Network ; Naïve Bayes
|
([[Fei Zheng; Geoffrey I. Webb, 2011b]]) ⇒ Fei Zheng; Geoffrey I. Webb. (2011). “Semi-Naïve Bayesian Learning.” In: (Sammut & Webb, 2011)
|
|
758
|
Semi-Supervised Learning
|
892
|
A
|
|
Xiaojin Zhu
|
|
Co-training ; Learning from labeled and unlabeled data ; Transductive learning
|
Active Learning ; Classification ; Constrained Clustering ; Dimensionality Reduction ; Online Learning ; Regression ; Supervised Learning ; Unsupervised Learning
|
(Xiaojin Zhu, 2011) ⇒ Xiaojin Zhu. (2011). “Semi-Supervised Learning.” In: (Sammut & Webb, 2011)
|
|
759
|
Semi-Supervised Text Processing
|
897
|
A
|
|
Ion Muslea
|
|
Learning from labeled and unlabeled data ; Transductive learning
|
|
(Ion Muslea, 2011) ⇒ Ion Muslea. (2011). “Semi-Supervised Text Processing.” In: (Sammut & Webb, 2011)
|
|
761
|
Sensitivity and Specificity
|
901
|
A
|
|
Kai Ming Ting
|
d
|
|
Confusion Matrix
|
(Kai Ming Ting, 2011d) ⇒ Kai Ming Ting. (2011). “Sensitivity and Specificity.” In: (Sammut & Webb, 2011)
|
|
769
|
Similarity Measures
|
903
|
A
|
|
Michail Vlachos
|
b
|
Distance ; Distance metrics ; Distance functions ; Distance measures
|
Dimensionality Reduction ; Feature Selection
|
(Michail Vlachos, 2011b) ⇒ Michail Vlachos. (2011). “Similarity Measures.” In: (Sammut & Webb, 2011)
|
|
781
|
Speedup Learning
|
907
|
A
|
|
Alan Fern
|
|
|
Explanation-Based Learning
|
(Alan Fern, 2011) ⇒ Alan Fern. (2011). “Speedup Learning.” In: (Sammut & Webb, 2011)
|
|
792
|
Statistical Machine Translation
|
912
|
A
|
|
Miles Osborne
|
|
SMT
|
|
(Miles Osborne, 2011) ⇒ Miles Osborne. (2011). “Statistical Machine Translation.” In: (Sammut & Webb, 2011)
|
|
794
|
Statistical Physics of Learning
|
916
|
A
|
|
Luc De Raedt; Kristian Kersting
|
|
|
Multi-Relational Data Mining ; Relational Learning
|
(Luc De Raedt; Kristian Kersting, 2011) ⇒ Luc De Raedt; Kristian Kersting. (2011). “Statistical Physics of Learning.” In: (Sammut & Webb, 2011)
|
|
795
|
Stochastic Finite Learning
|
925
|
A
|
|
Thomas Zeugmann
|
d
|
|
Inductive Inference ; PAC Learning
|
(Thomas Zeugmann, 2011d) ⇒ Thomas Zeugmann. (2011). “Stochastic Finite Learning.” In: (Sammut & Webb, 2011)
|
|
801
|
Structural Risk Minimization
|
929
|
A
|
|
Xinhua Zhang
|
f
|
|
|
(Xinhua Zhang, 2011f) ⇒ Xinhua Zhang. (2011). “Structural Risk Minimization.” In: (Sammut & Webb, 2011)
|
|
804
|
Structured Induction
|
930
|
A
|
|
Michael Bain
|
|
|
Classifier ; Constructive Induction ; Decision Tree ; Feature Construction ; Predicate Invention ; Rule Learning
|
(Michael Bain, 2011) ⇒ Michael Bain. (2011). “Structured Induction.” In: (Sammut & Webb, 2011)
|
|
806
|
Sublinear Clustering
|
933
|
A
|
|
Artur Czumaj; Christian Sohler
|
|
|
|
(Artur Czumaj; Christian Sohler, 2011) ⇒ Artur Czumaj; Christian Sohler. (2011). “Sublinear Clustering.” In: (Sammut & Webb, 2011)
|
|
808
|
Subsumption
|
937
|
A
|
|
Claude Sammut
|
j
|
|
Generalization ; Induction ; Learning as Search ; Logic Generality
|
(Claude Sammut, 2011j) ⇒ Claude Sammut. (2011). “Subsumption.” In: (Sammut & Webb, 2011)
|
|
810
|
Supervised Descriptive Rule Induction
|
938
|
A
|
|
Peter Kralj Novak; Nada Lavrac; Geoffrey I. Webb
|
|
SDRI
|
Apriori ; Association Rule Discovery ; Classification Rule ; Contrast Set Mining ; Emerging Pattern Mining ; Subgroup Discovery ; Supervised Rule Induction.
|
([[Peter Kralj Novak; Nada Lavrac; Geoffrey I. Webb, 2011]]) ⇒ Peter Kralj Novak; Nada Lavrac; Geoffrey I. Webb. (2011). “Supervised Descriptive Rule Induction.” In: (Sammut & Webb, 2011)
|
|
812
|
Support Vector Machines
|
941
|
A
|
|
Xinhua Zhang
|
g
|
|
Kernel Methods ; Radial Basis Function Networks
|
(Xinhua Zhang, 2011g) ⇒ Xinhua Zhang. (2011). “Support Vector Machines.” In: (Sammut & Webb, 2011)
|
|
814
|
Symbolic Dynamic Programming
|
946
|
A
|
|
Scott Sanner; Kristian Kersting
|
|
Dynamic programming for relational domains ; Relational dynamic programming ; Relational value iteration ; SDP
|
Dynamic Programming ; Markov Decision Processes
|
(Scott Sanner; Kristian Kersting, 2011) ⇒ Scott Sanner; Kristian Kersting. (2011). “Symbolic Dynamic Programming.” In: (Sammut & Webb, 2011)
|
|
826
|
Temporal Difference Learning
|
956
|
A
|
|
William Uther
|
b
|
|
Curse of Dimensionality ; Markov Decision Processes ; Monte-Carlo Simulation ; Reinforcement Learning
|
(William Uther, 2011b) ⇒ William Uther. (2011). “Temporal Difference Learning.” In: (Sammut & Webb, 2011)
|
|
834
|
Text Mining
|
962
|
A
|
|
Dunja Mladenić
|
b
|
Analysis of text ; Data mining ; Text learning
|
Cross-lingual Text Mining ; Feature Construction in Text Mining ; Feature Selection in Text Mining ; Semi-Supervised Text Processing ; Text Mining for Advertising ; Text Mining for News and Blogs Analysis ; Text Mining for the Semantic Web ; Text Mining for Spam Filtering ; Text Visualization
|
(Dunja Mladenić, 2011b) ⇒ Dunja Mladenić. (2011). “Text Mining.” In: (Sammut & Webb, 2011)
|
|
835
|
Text Mining for Advertising
|
963
|
A
|
|
Massimiliano Ciaramita
|
|
Content match ; Contextual advertising ; Sponsored search ; Web advertising
|
Boosting ; Genetic Programming ; Information Retrieval ; Perception ; SVM ; TF-IDF ; Vector Space Model
|
(Massimiliano Ciaramita, 2011) ⇒ Massimiliano Ciaramita. (2011). “Text Mining for Advertising.” In: (Sammut & Webb, 2011)
|
|
836
|
Text Mining for News and Blogs Analysis
|
968
|
A
|
|
Bettina Berendt
|
|
|
|
(Bettina Berendt, 2011) ⇒ Bettina Berendt. (2011). “Text Mining for News and Blogs Analysis.” In: (Sammut & Webb, 2011)
|
|
837
|
Text Mining for Spam Filtering
|
972
|
A
|
|
Aleksander Kolcz
|
|
Commercial email filtering ; Junk email filtering ; Spam detection ; Unsolicited commercial email filtering
|
Cost-Sensitive Learning ; Logistic Regression ; Naïve Bayes ; Support Vector Machines ; Text Categorization
|
(Aleksander Kolcz, 2011) ⇒ Aleksander Kolcz. (2011). “Text Mining for Spam Filtering.” In: (Sammut & Webb, 2011)
|
|
838
|
Text Mining for Semantic Web
|
978
|
A
|
|
Marko Grobelnik; Dunja Mladenić
|
|
|
Active learning ; Classification ; Document Clustering ; Semisupervised Learning ; Semisupervised Text Processing ; Text Mining ; Text Visualization
|
([[Marko Grobelnik; Dunja Mladenić, 2011]]) ⇒ Marko Grobelnik; Dunja Mladenić. (2011). “Text Mining for Semantic Web.” In: (Sammut & Webb, 2011)
|
|
840
|
Text Visualization
|
980
|
A
|
|
John Risch; Shawn Bohn; Steve Poteet; Anne Kao; Lesley Quach; Jason Wu
|
|
Semantic mapping ; Text spatialization ; Topic mapping
|
Dimensional Reduction ; Documents Classification/Clustering ; Feature Selection/Construction ; Information Extraction/Visualization ; Self-Organizing Maps ; Text Preprocessing
|
(John Risch; Shawn Bohn; Steve Poteet; Anne Kao; Lesley Quach; Jason Wu , 2011) ⇒ John Risch; Shawn Bohn; Steve Poteet; Anne Kao; Lesley Quach; Jason Wu . (2011). “Text Visualization.” In: (Sammut & Webb, 2011)
|
|
844
|
Time Series
|
987
|
A
|
|
Eamonn Keogh
|
c
|
Temporal data ; Time sequence ; Trajectory data
|
|
(Eamonn Keogh, 2011c) ⇒ Eamonn Keogh. (2011). “Time Series.” In: (Sammut & Webb, 2011)
|
|
846
|
Topology of a Neural Network
|
988
|
A
|
|
Risto Miikkulainen
|
e
|
Connectivity ; neural network architecture ; structure
|
|
(Risto Miikkulainen, 2011e) ⇒ Risto Miikkulainen. (2011). “Topology of a Neural Network.” In: (Sammut & Webb, 2011)
|
|
847
|
Trace-Based Programming
|
989
|
A
|
|
Pierre Flener; Ute Schmid
|
c
|
Programming from traces ; Trace-based programming
|
Inductive Programming ; Programming by Demonstration
|
(Pierre Flener; Ute Schmid, 2011c) ⇒ Pierre Flener; Ute Schmid. (2011). “Trace-Based Programming.” In: (Sammut & Webb, 2011)
|
|
858
|
Tree Augmented Naïve Bayes
|
990
|
A
|
|
Fei Zheng; Geoffrey I. Webb
|
c
|
TAN
|
Averaged One-Dependence Estimators ; Bayesian Network ; Naïve Bayes ; Semi-Naïve Bayesian Learning
|
([[Fei Zheng; Geoffrey I. Webb, 2011c]]) ⇒ Fei Zheng; Geoffrey I. Webb. (2011). “Tree Augmented Naïve Bayes.” In: (Sammut & Webb, 2011)
|
|
859
|
Tree Mining
|
991
|
A
|
|
Siegfried Nijssen
|
b
|
|
Constraint-based Mining ; Graph Mining
|
(Siegfried Nijssen, 2011b) ⇒ Siegfried Nijssen. (2011). “Tree Mining.” In: (Sammut & Webb, 2011)
|
|
870
|
Universal Learning Theory
|
1001
|
A
|
|
Marcus Hutter
|
|
|
Bayes Rule ; Bayesian Methods ; Bayesian Reinforcement Learning ; Classification ; Data Set ; Discriminative Learning ; Hypothesis Learning ; Inductive Inference ; Loss ; Minimum Description Length ; On-line Learning ; Prior Probability ; Reinforcement Learning ; Time Series
|
(Marcus Hutter, 2011) ⇒ Marcus Hutter. (2011). “Universal Learning Theory.” In: (Sammut & Webb, 2011)
|
|
879
|
Value Function Approximation
|
1011
|
A
|
|
Michail G. Lagoudakis
|
|
Approximate Dynamic Programming ; Neuro-Dynamic Programming ; Cost-to-go Function Approximation
|
Curse of Dimensionality ; Dynamic Programming ; Feature Selection ; Gaussian Process Reinforcement Learning ; Least-Square Reinforcement Learning Methods ; Q-Learning: Radial Basis Functions ; Reinforcement Learning ; Temporal Difference Learning ; Value Iteration
|
(Michail G. Lagoudakis, 2011) ⇒ Michail G. Lagoudakis. (2011). “Value Function Approximation.” In: (Sammut & Webb, 2011)
|
|
884
|
VC Dimension
|
1021
|
A
|
|
Thomas Zeugmann
|
e
|
|
Epsilon Nets ; PAC Learning ; Statistical Machine Learning ; Structural Risk Management
|
(Thomas Zeugmann, 2011e) ⇒ Thomas Zeugmann. (2011). “VC Dimension.” In: (Sammut & Webb, 2011)
|
|
886
|
Version Space
|
1024
|
A
|
|
Claude Sammut
|
k
|
|
Learning as Search ; Noise
|
(Claude Sammut, 2011k) ⇒ Claude Sammut. (2011). “Version Space.” In: (Sammut & Webb, 2011)
|
|
889
|
Weight
|
1027
|
A
|
|
Risto Miikkulainen
|
f
|
Connection strength ; Synaptic efficacy
|
|
(Risto Miikkulainen, 2011f) ⇒ Risto Miikkulainen. (2011). “Weight.” In: (Sammut & Webb, 2011)
|
|
891
|
Word Sense Disambiguation
|
1027
|
A
|
|
Rada Mihalcea
|
|
Learning word senses ; Solving semantic ambiguity
|
Semi-supervised Text Processing
|
(Rada Mihalcea, 2011) ⇒ Rada Mihalcea. (2011). “Word Sense Disambiguation.” In: (Sammut & Webb, 2011)
|
|