sklearn.tree Module
Jump to navigation
Jump to search
An sklearn.tree Module is an sklearn module of decision-tree learning systems.
- AKA: Scikit-Learn Decision-Tree Class.
- Context:
- It require to call/select a Decision Tree Learning System :
sklearn.tree.Model_Name(self, arguments)
or simplysklearn.tree.Model_Name()
where Model_Name is the name of the selected decision-tree learning system.
- It require to call/select a Decision Tree Learning System :
- Example(s)
sklearn.tree.DecisionTreeClassifier()
, a Classification Tree Learning System.sklearn.tree.DecisionTreeRegressor()
, a Regression Tree Learning System.sklearn.tree.ExtraTreeClassifier()
, a Classification Extra Trees Learning System.sklearn.tree.ExtraTreeRegressor()
, a Regression Extra Trees Learning System.- …
- Counter-Example(s):
sklearn.manifold
, a collection of Manifold Learning Systems.sklearn.ensemble
, a collection of Decision Tree Ensemble Learning Systems.sklearn.metrics
, a collection of Metrics Subroutines.sklearn.covariance
,a collection of Covariance Estimators.sklearn.cluster.bicluster
, a collection of Spectral Biclustering Algorithms.sklearn.linear_model
, a collection of Linear Model Regression Systems.sklearn.neighbors
, a collection of K Nearest Neighbors Algorithms.sklearn.neural_network
, a collection of Neural Network Systems.
- See: DTree System.
References
2017
- http://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree
- QUOTE: The sklearn.tree module includes decision tree-based models for classification and regression.
User guide: See the Decision Trees section for further details. tree.DecisionTreeClassifier([criterion, …]) A decision tree classifier. tree.DecisionTreeRegressor([criterion, …]) A decision tree regressor. tree.ExtraTreeClassifier([criterion, …]) An extremely randomized tree classifier. tree.ExtraTreeRegressor([criterion, …]) An extremely randomized tree regressor. tree.export_graphviz(decision_tree[, …]) Export a decision tree in DOT format.