1995 TheNatureOfStatisticalLearningTheory
- (Vapnik, 1995) ⇒ Vladimir N. Vapnik. (1995). “The Nature of Statistical Learning Theory.” In: Springer. ISBN:0387945598.
Subject Headings: Support Vector Machine Classifier. Statistical Learning, Statistical Theory.
Notes
Cited By
2004
- (Hastie et al., 2004) ⇒ Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. (2004). “The Entire Regularization Path for the Support Vector Machine.” In: The Journal of Machine Learning Research, 5.
2000
- (Vapnik, 2000) ⇒ Vladimir N. Vapnik. (2000). “The Nature of Statistical Learning Theory (2nd Edition).” Springer. ISBN:0387987800
1998
- (Vapnik, 1998) ⇒ Vladimir N. Vapnik. (1998). “Statistical Learning Theory.” John Wiley. ISBN:0471030031
Quotes
Book Overview
The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: * the setting of learning problems based on the model of minimizing the risk functional from empirical data * a comprehensive analysis of the empirical risk minimization principle including necessary and sufficient conditions for its consistency * non-asymptotic bounds for the risk achieved using the empirical risk minimization principle * principles for controlling the generalization ability of learning machines using small sample sizes based on these bounds * the Support Vector methods that control the generalization ability when estimating function using small sample size. The second edition of the book contains three new chapters devoted to further development of the learning theory and SVM techniques. These include: * the theory of direct method of learning based on solving multidimensional integral equations for density, conditional probability, and conditional density estimation * a new inductive principle of learning. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists. Vladimir N. Vapnik is Technology Leader AT&T Labs-Research and Professor of London University. He is one of the founders of statistical learning theory, and the author of seven books published in English, Russian, German, and Chinese.
References
,