Stacked Autoencoding Neural Network

From GM-RKB
Jump to navigation Jump to search

A Stacked Autoencoding Neural Network is a multi-layer feedforward neural network consisting of layers of sparse autoencoders in which the outputs of each layer is wired to the inputs of the successive layer.



References

2014

2011

  • (UFLDL, 2011) ⇒ http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders#Overview
    • QUOTE: ... A stacked autoencoder is a neural network consisting of multiple layers of sparse autoencoders in which the outputs of each layer is wired to the inputs of the successive layer. Formally, consider a stacked autoencoder with n layers. Using notation from the autoencoder section, let [math]\displaystyle{ W^{(k, 1)}, W^{(k, 2)}, b^{(k, 1)}, b^{(k, 2)} }[/math] denote the parameters [math]\displaystyle{ W^{(1)}, W^{(2)}, b^{(1)}, b^{(2)} }[/math] for kth autoencoder. Then the encoding step for the stacked autoencoder is given by running the encoding step of each layer in forward order: [math]\displaystyle{ \begin{align} a^{(l)} = f(z^{(l)}) \\ z^{(l + 1)} = W^{(l, 1)}a^{(l)} + b^{(l, 1)} \end{align} }[/math] The decoding step is given by running the decoding stack of each autoencoder in reverse order: [math]\displaystyle{ \begin{align} a^{(n + l)} = f(z^{(n + l)}) \\ z^{(n + l + 1)} = W^{(n - l, 2)}a^{(n + l)} + b^{(n - l, 2)} \end{align} }[/math] The information of interest is contained within [math]\displaystyle{ a^{(n)} }[/math], which is the activation of the deepest layer of hidden units. This vector gives us a representation of the input in terms of higher-order features.

      The features from the stacked autoencoder can be used for classification problems by feeding [math]\displaystyle{ a(n) }[/math] to a softmax classifier.

2009

2008