Matrix Compression Task
Jump to navigation
Jump to search
A Matrix Compression Task is a compression task that accepts a matrix and produces a compressed matrix.
- Example(s):
- SVD-based Matrix Compression, such as:
A = np.random.randn(9, 6) + 1.j*np.random.randn(9, 6) A = numpy.array([ [2.0, 0.0, 8.0, 6.0, 0.0], [1.0, 6.0, 0.0, 1.0, 7.0], [5.0, 0.0, 7.0, 4.0, 0.0], [7.0, 0.0, 8.0, 5.0, 0.0], [0.0, 10.0, 0.0, 0.0, 7.0]]) U,sigma,Vh = numpy.linalg.svd(A, full_matrices=True) U.shape, Vh.shape, sigma.shape for i in xrange(1, 51, 5): dA = np.matrix(U[:, :i]) * np.diag(sigma[:i]) * np.matrix(Vh[:i, :])
References
2010
- (Börm, 2010) ⇒ Steffen Börm. (2010). “Efficient numerical methods for non-local operators: H2-matrix compression, algorithms and analysis." European Mathematical Society.