SVD-based Matrix Compression Task
(Redirected from SVD-based Matrix Compression)
Jump to navigation
Jump to search
An SVD-based Matrix Compression Task is a matrix compression task that requires the use of an SVD task.
- Example(s):
A = np.random.randn(9, 6) + 1.j*np.random.randn(9, 6) A = numpy.array([ [2.0, 0.0, 8.0, 6.0, 0.0], [1.0, 6.0, 0.0, 1.0, 7.0], [5.0, 0.0, 7.0, 4.0, 0.0], [7.0, 0.0, 8.0, 5.0, 0.0], [0.0, 10.0, 0.0, 0.0, 7.0]]) U,sigma,Vh = numpy.linalg.svd(A, full_matrices=True) U.shape, Vh.shape, sigma.shape for i in xrange(1, 51, 5): dA = np.matrix(U[:, :i]) * np.diag(sigma[:i]) * np.matrix(Vh[:i, :])
References
2006
- (Shnayderman et al., 2006) ⇒ Aleksandr Shnayderman, Alexander Gusev, and Ahmet M. Eskicioglu. (2006). “An SVD-based Grayscale Image Quality Measure for Local and Global Assessment." Image Processing, IEEE Transactions on 15(2).