Leaky Rectified Linear Neuron
Jump to navigation
Jump to search
A Leaky Rectified Linear Neuron is an Rectified Linear Neuron in which the leakage coefficient is a non-zero small fraction, i.e. [math]\displaystyle{ 0\lt \alpha \lt \lt 1 }[/math].
- AKA: Leaky Rectified Linear Unit, Leaky ReLU.
- Example(s):
- A Rectified Linear Neuron with [math]\displaystyle{ \alpha=0.01 }[/math]
- a Randomized Leaky Rectified Linear Neuron,
- …
- Counter-Example(s):
- a Parametric Rectified Linear Neuron,
- a S-shaped Rectified Linear Neuron,
- an Adaptive Linear Neuron,
- a Scaled Exponential Linear Neuron,
- a Exponential Linear Neuron,
- a Bent Identity Neuron.
- a Hyperbolic Tangent Neuron,
- a Sigmoid Neuron,
- a Heaviside Step Neuron,
- a Stochastic Binary Neuron,
- a SoftPlus Neuron,
- a Softmax Neuron.
- See: Artificial Neural Network, Perceptron, Linear Neuron.
References
2017
- (Mate Labs, 2017) ⇒ Mate Labs Aug 23, 2017. Secret Sauce behind the beauty of Deep Learning: Beginners guide to Activation Functions
- QUOTE: Leaky rectified linear unit (Leaky ReLU) — Leaky ReLUs allow a small, non-zero gradient when the unit is not active. 0.01 is the small non-zero gradient here
[math]\displaystyle{ f(x) = \begin{cases} 0, & \mbox{for } 0.01x \lt 0 \\ x, & \mbox{for } x \geq 0 \end{cases} }[/math]
Range:[math]\displaystyle{ (-\infty, +\infty) }[/math]
- QUOTE: Leaky rectified linear unit (Leaky ReLU) — Leaky ReLUs allow a small, non-zero gradient when the unit is not active. 0.01 is the small non-zero gradient here