KDD 2011 References Analysis Report

From GM-RKB
Jump to navigation Jump to search

A KDD-2011 References Analysis Report is a KDD references analysis report for the KDD 2011 Proceedings.



References

2011-08-31 KDD 2011 References Analysis Report

(note: this data was extracted semi-automatically so there are likely some inaccuracies).

Sortable table
Row Identifier References Count Rank References Count Referenced Publication (short + hyperlink) Referenced Publication (full citation string)
1 1 17 (Blei, Ng & Jordan, 2003)[1] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. In: Journal of Machine Learning Research (JMLR), 3:993--1022, 2003.
2 2 14 (Chang & Lin, 2001) Chih-Chung Chang and C.-J. Lin. PhLIBSVM: A Library for Support Vector Machines, 2001. Software Available at Http://www.csie.ntu.edu.tw/ Cjlin/libsvm.
3 3 10 (Hastie et al., 2001)[2] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. Chapter 10. Boosting and Additive Trees. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Pages 337--384. New York: Springer, 2009.
4 4 8 (Griffiths & Steyvers, 2004) Thomas L. Griffiths and Mark Steyvers. Finding Scientific Topics. In: Proceedings of the National Academy of Sciences of the United States of America, Pages 5228--5235, 2004.
5 4 8 (Koren et al., 2009) Yehuda Koren, R. M. Bell, and Chris Volinsky. Matrix Factorization Techniques for Recommender Systems. In: IEEE Computer - COMPUTER, 42(8):30--37, 2009.
6 5 7 (Blei & McAuliffe, 2007) David M. Blei and J. McAuliffe. Supervised Topic Models. Advances in Neural Information Processing Systems, 20:121--128, 2008.
7 5 7 (Breiman, 2001) L. B. Statistics and Leo Breiman. Random Forests. In Machine Learning, Pages 5--32, 2001.
8 5 7 (Kleinberg, 1999) Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. In: Proceedings of thes of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Pages 668--677, 1998.
9 5 7 (Quinlan, 1993a) J. Ross Quinlan. C4.5: Programs for Machine Learning. In: (Morgan Kaufmann Series in Machine Learning). Morgan Kaufmann, 1993.
10 6 6 (Frank & Asuncion, 2010) Andrew Frank and Arthur Asuncion. UCI Machine Learning Repository. Http://archive.ics.uci.edu/ml, 2010. University of California, Irvine, School of Information and Computer Sciences.
11 6 6 (Page et al., 1998) Lawrence Page, Sergey Brin, Rajeev Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies Project, 1998. Paper SIDL-WP-1999-0120 (version of 11/11/1999).
12 6 6 (Settles, 2009) Burr Settles. Active Learning Literature Survey. Technical Report 1648, Department of Computer Sciences, University of Wisconsin-Madison, January 2009.
13 6 6 (Tibshirani, 1996) Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. In: Journal of the Royal Statistical Society Ser. B Stat. Methodol., 58 (1): 267--288, 1996. Http://www.jstor.org/stable/2346178.
14 7 5 (Agrawal & Srikant, 1994) Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994), Pages 487--499, 1994.
15 7 5 (Agrawal & Srikant, 1995) Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns. In: Proceedings of the 11th International Conference on Data Engineering (ICDE 95), Pages 3--14, Taipei, Taiwan, 1995.
16 7 5 (Blei & Lafferty, 2006) David M. Blei and John D. Lafferty. Dynamic Topic Models. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), Pages 113--120, 2006.
17 7 5 (Brin & Page, 1998) Sergey Brin and Lawrence Page. The Anatomy of a Large-scale Hypertextual Web Search Engine. In Computer Networks and ISDN Systems, Volume 30, Issue 1--7, Pages 107--117, 1998.
18 7 5 (Das et al., 2007) Abhinandan S. Das, M. Datar, A. Garg, and S. Rajaram. Google News Personalization: Scalable Online Collaborative Filtering. In: Proceedings International Conference on World Wide Web (WWW'07), Pages 271--280, 2007.
19 7 5 (Dean & Ghemawat, 2004) J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In: Proceedings of thes of the 6th Symposium on Operating System Design and Implementation (OSDI), 2004.
20 7 5 (Dempster et al., 1977) Arthur P. Dempster, Nan Laird, Donald Rubin, Et Al. Maximum Likelihood from Incomplete Data via the EM Algorithm. In: Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1--38, 1977.
21 7 5 (Hofmann, 1999) T. Hofmann. Probabilistic Latent Semantic Indexing. In: Proceedings of SIGIR '99: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Pages 50--57, 1999.
22 7 5 (Joachims, 2006) Thorsten Joachims. Training Linear Svms in Linear Time. In: Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2006.
23 7 5 (Leskovec et al., 2009) Jure Leskovec, Lars Backstrom, and Jon M. Kleinberg. Meme-tracking and the Dynamics of the News Cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '09, Pages 497--506, New York, NY, USA, 2009. ACM.
24 7 5 (Leskovec, Krause et al., 2007) Jure Leskovec, A. Krause, C. Guestrin, Christos Faloutsos, J. VanBriesen, and N. Glance. Cost-effective Outbreak Detection in Networks. In: Proceedings of KDD '07: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Pages 420--429, New York, NY, USA, 2007. ACM.
25 7 5 (Shalev-Shwartz et al., 2007) S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated Sub-gradient Solver for SVM. In: Proceedings of ICML '07: Proceedings of the 24th International Conference on Machine Learning, 2007.
26 7 5 (Smola & Narayanamurthy, 2010) Alexander J. Smola and S. Narayanamurthy. An Architecture for Parallel Topic Models. In: Proceedings of Very Large Databases (VLDB), 2010.
27 7 5 (Sweeney, 2002) Latanya Sweeney. K-anonymity: A Model for Protecting Privacy. In: International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557--570, 2002.
28 8 4 (Asuncion & Newman, 2007) Arthur Asuncion and David J. Newman. UCI Machine Learning Repository. Http://www.ics.uci.edu/~mlearn/MLRepository.html, 2007.
29 8 4 (Bishop, 2006) Christopher M. Bishop. In: Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc., 2006.
30 8 4 (Breiman et al., 1984) Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classification and Regression Trees. CRC Press Reprint, 1998.
31 8 4 (Breiman, 1996) Leo Breiman, "Bagging Predictors," Machine Learning, Vol. 24, Pp. 123--140, August 1996.
32 8 4 (Kempe et al., 2003) David Kempe, Jon M. Kleinberg, and E. Tardos. Maximizing the Spread of Influence through a Social Network. In: Proceedings of KDD '03: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Pages 137--146, New York, NY, USA, 2003. ACM.
33 8 4 (Leskovec, Adamic & Huberman, 2007) Jure Leskovec, Lada A. Adamic, and B. Huberman. The Dynamics of Viral Marketing. In: ACM Transactions on the Web (TWEB), 1(1), 2007.
34 8 4 (Lewis et al., 2004) D. D. Lewis, Yiming Yang, T. G. Rose, and F. Li. RCV1: A New Benchmark Collection for Text Categorization Research. In: Journal of Machine Learning Research, 5:361--397, 2004.
35 8 4 (Liben-Nowell & Kleinberg, 2003) David Liben-Nowell and Jon M. Kleinberg. The Link Prediction Problem for Social Networks. In: Proceedings of the ACM Conference on Information and Knowledge Management, 2003.
36 8 4 (Lichtenwalter et al., 2010) Ryan Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla. New Perspectives and Methods in Link Prediction. In: Proceedings of KDD '10, Pages 243--252, New York, NY, USA, 2010. ACM.
37 8 4 (Macskassy & Provost, 2007) Sofus. A. Macskassy and Foster Provost. Classification in Networked Data: A Toolkit and a Univariate Case Study. In: Journal of Machine Learning Research (JMLR), 8:935--983, 2007.
38 8 4 (Schölkopf & Smola, 2002) Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001. ISBN 0262194759.
39 8 4 (Smola et al., 2008) Choon Hui Teo, S. V. N. Vishwanathan, Alexander J. Smola, and Q. V. Le. Bundle Methods for Regularized Risk Minimization. In: Journal of Machine Learning Research, 11:311--365, 2010.
40 8 4 (Teh et al., 2006) Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical Dirichlet Processes. In: Journal of the American Statistical Association, 101:1566--1581, 2004.
41 8 4 (Wasserman & Faust, 1994) Stanley Wasserman, Katherine Faust, D. Iacobucci, and M. Granovetter. Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.
42 8 4 (Weinberger et al., 2009) K. Weinberger, A. Dasgupta, J. Langford, Alexander J. Smola, and Josh Attenberg. Feature Hashing for Large Scale Multitask Learning. In: Proceedings of ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning, Pages 1113--1120, 2009.
43 8 4 (Zhou et al., 2004) Dengyong Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf. Learning with Local and Global Consistency. In: Advances in Neural Information Processing Systems 16, 2004.
44 8 4 (Zhu, 2005) Xiaojin Zhu. Semi-Supervised Learning Literature Survey. Technical Report, 2008. University of Wisconsin Madison, Computer Sciences TR 1530.
...
...
...
...
...
4,256 Total Reference Items
(entire proceedings)
  1. journal + conference paper
  2. includes first and second edition