KDD References Analysis Report

From GM-RKB
Jump to navigation Jump to search

A KDD References Analysis Report is a references analysis report for one or more KDD Proceedings.



References

2011-08-31 KDD References Analysis Report (2008 to 2011)

(note: this data was extracted semi-automatically, so some inaccuracies are likely).

Sortable table
Row Id Reference Rank Referenced Publication (short str. + GM-RKB hlink) 2008 Refs. Count 2009 Refs. Count 2010 Refs. Count 2011 Refs. Count Total Refs. Count Referenced Publication (long string)
1 1 (Blei, Ng & Jordan, 2003)[1] 14 8 12 17 51 David M. Blei, Andrew Y. Ng, and Michael I. Jordan. (2003). “Latent Dirichlet Allocation.” In: The Journal of Machine Learning Research, 3. doi:10.1162/jmlr.2003.3.4-5.993
2 2 (Chang & Lin, 2001) 8 2 9 14 33 Chih-Chung Chang, and Chih-Jen Lin. (2001). “LIBSVM: a library for support vector machines." Technical Report.
3 3 (Asuncion & Newman, 2007) 2 7 13 4 26 Arthur Asuncion and David J. Newman 2007 UCI Machine Learning Repository {http://www.ics.uci.edu/~mlearn/MLRepository.html}. Irvine, CA: University of California, School of Information and Computer Science.
4 4 (Hastie et al., 2001)[2] 4 5 4 10 23 Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. (2001). “The Elements of Statistical Learning: Data Mining, Inference, and Prediction." Springer-Verlag. ISBN:0387952845
5 5 (Kleinberg, 1999) 2 9 4 7 22 Jon Kleinberg. (1999). “Authoritative Sources in a Hyperlinked Environment.” In: Journal of the ACM (JACM), 46(5) doi:10.1145/324133.324140
6 6 (Griffiths & Steyvers, 2004) 4 3 6 8 21 Thomas L. Griffiths, and Mark Steyvers. (2004). “Finding Scientific Topics.” In: Proceedings of the National Academy of Sciences (PNAS), 101(Suppl. 1). doi:10.1073/pnas.0307752101
7 7 (Kempe et al., 2003) 5 4 7 4 20 David Kempe, Jon Kleinberg, and Éva Tardos, (2003). “Maximizing the Spread of Influence Through a Social Network.” In: Proceedings of SIGKDD Conference (KDD-2003). doi:10.1145/956750.956769
8 7 (Witten & Frank, 2005)[3] 9 6 3 2 20 Ian H. Witten, and Eibe Frank. (2005). “Data Mining: Practical machine learning tools and techniques, Second Edition." Morgan Kaufmann. ISBN:0120884070.
9 8 (Agrawal & Srikant, 1994) 6 6 2 5 19 Rakesh Agrawal, and Ramakrishnan Srikant. (1994). “Fast Algorithms for Mining Association Rules in Large Databases.” In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB 1994).
10 8 (Dempster et al., 1977) 4 6 4 5 19 Arthur P. Dempster, Nan Laird, and Donald Rubin. (1977). “Maximum Likelihood from Incomplete Data via the EM Algorithm.” In: Journal of the Royal Statistical Society, Series B, 39(1).
11 8 (Quinlan, 1993a) 5 3 4 7 19 J. Ross Quinlan. (1993). “C4.5: Programs for machine learning." Morgan Kaufmann. ISBN:1558602380
12 9 (Brin & Page, 1998) 2 8 3 5 18 Sergey Brin, and Larry Page. (1998). “The Anatomy of a Large-Scale Hypertextual Web Search Engine.” In: Proceedings of the Seventh International World Wide Web Conference (WWW 1998). doi:10.1016/S0169-7552(98)00110-X
13 9 (Hofmann, 1999a) 5 6 2 5 18 Thomas Hofmann. (1999). “Probabilistic Latent Semantic Indexing.” In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1999) doi:10.1145/312624.312649
14 9 (Page et al., 1998) 3 5 4 6 18 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. (1998). “The PageRank Citation Ranking: Bringing order to the web." Technical Report, Stanford University.
15 10 (Bishop, 2006) 3 6 4 4 17 Christopher M. Bishop. (2006). “Pattern Recognition and Machine Learning." Springer. ISBN:0387310738
16 10 (Wasserman & Faust, 1994) 3 9 1 4 17 Stanley Wasserman, and Katherine Faust. (1994) "Social Network Analysis: Methods and Applications." Cambridge University Press. ISBN:0521387078
17 11 (Backstrom et al., 2006) 7 6 3 0 16 Lars Backstrom, Dan Huttenlocher, Jon M. Kleinberg, Xiangyang Lan, Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 20-23, 2006, Philadelphia, PA, USA doi:10.1145/1150402.1150412
18 11 (Boyd & Vandenberghe, 2004) 4 6 4 2 16 Stephen Boyd, Lieven Vandenberghe, Convex Optimization, Cambridge University Press, New York, NY, 2004
19 11 (Golub & Van Loan, 1996) 9 3 1 3 16 Gene H. Golub, Charles F. Van Loan, Matrix Computations (3rd Ed.). Johns Hopkins University Press, Baltimore, MD, 1996
20 11 (Joachims, 2002c) 5 7 3 1 16 Thorsten Joachims, Optimizing search engines using clickthrough data. In: Proceedings of the eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada doi:10.1145/775047.775067
21 12 (Agrawal & Srikant, 1995) 6 2 2 5 15 Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Patterns. In: Proceedings of the 11th International Conference on Data Engineering (ICDE 95), Pages 3--14, Taipei, Taiwan, 1995.
22 12 (Breiman, 2001) 3 1 4 7 15 Leo Breiman, Random Forests, Machine Learning, v.45 n.1, p.5-32, October 1 2001 doi:10.1023/A:1010933404324
23 12 (Dean & Ghemawat, 2004) 3 6 1 5 15 Jeffrey Dean, Sanjay Ghemawat, MapReduce: Simplified Data Processing on Large Clusters. In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation, p.10-10, December 06-08, 2004, San Francisco, CA
24 12 (Leskovec et al., 2005) 5 5 2 3 15 Jure Leskovec, Jon M. Kleinberg, Christos Faloutsos, Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, August 21-24, 2005, Chicago, Illinois, USA doi:10.1145/1081870.1081893
25 12 (Lewis et al., 2004) 6 2 3 4 15 David D. Lewis, Yiming Yang, Tony G. Rose, Fan Li, RCV1: A New Benchmark Collection for Text Categorization Research. In: The Journal of Machine Learning Research, 5, p.361-397, 12/1/2004
26 12 (Liben-Nowell & Kleinberg, 2003) 3 2 6 4 15 David Liben-Nowell, Jon M. Kleinberg, The Link Prediction Problem for Social Networks. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, November 03-08, 2003, New Orleans, LA, USA doi:10.1145/956863.956972
27 12 (Tibshirani, 1996) 0 5 4 6 15 Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. In: Journal of the Royal Statistical Society Ser. B Stat. Methodol., 58 (1): 267--288, 1996. Http://www.jstor.org/stable/2346178.
28 13 (Joachims, 2006) 6 0 3 5 14 Thorsten Joachims, Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 20-23, 2006, Philadelphia, PA, USA doi:10.1145/1150402.1150429
29 13 (Newman, 2003) 4 6 3 1 14 M. E. J. Newman. The Structure and Function of Complex Networks. In: SIAM Review, 45:167--256, Mar. 2003.
30 13 (Zhu et al., 2003) 3 6 3 2 14 Xiaojin Zhu, John D. Lafferty, and Zoubin Ghahramani. Combining Active Learning and Semi-supervised Learning Using Gaussian Fields and Harmonic Functions. In: Proceedings of ICML 2003 Workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, 2003.
31 13 (Zhu, 2005) 4 5 1 4 14 Xiaojin Zhu. Semi-supervised Learning Literature Survey. Technical Report 1530, Department of Computer Sciences, University of Wisconsin, Madison, 2005.
32 14 (Agrawal et al., 1993) 4 4 3 2 13 Rakesh Agrawal, Tomasz Imielinski, Arun Swami, Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of data, p.207-216, May 25-28, 1993, Washington, D.C., United States doi:10.1145/170035.170072
33 14 (Baeza-Yates & Ribeiro-Neto, 1999) 5 3 3 2 13 Ricardo A. Baeza-Yates, Berthier Ribeiro-Neto, Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1999
34 14 (Duda et al., 2000) 3 4 3 3 13 Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification (2nd Edition). Wiley-Interscience, 2000
35 14 (Lafferty et al., 2001) 3 5 4 1 13 John D. Lafferty, Andrew McCallum, Fernando C. N. Pereira, Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings of the Eighteenth International Conference on Machine Learning, p.282-289, June 28-July 01, 2001
36 14 (Watts & Strogatz, 1998) 5 4 1 3 13 Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of 'small-world' Networks. In: Nature, 393(6684):440--442, June 1998.
37 15 (Barabasi & Albert, 1999) 3 4 3 2 12 Albert-László Barabási and Réka Albert. Emergence of Scaling in Random Networks. In: Science, 286(5439):509--512, October 1999.
38 15 (Blei & Lafferty, 2006) 2 1 4 5 12 David M. Blei, John D. Lafferty, Dynamic Topic Models. In: Proceedings of the 23rd International Conference on Machine Learning, p.113-120, June 25-29, 2006, Pittsburgh, Pennsylvania doi:10.1145/1143844.1143859
39 15 (Breiman et al., 1984) 3 3 2 4 12 Leo Breiman, Jerome H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. Wadsworth & Brooks/Cole, 1984, ISBN: 0-534-98054-6.
40 15 (Faloutsos et al., 1999) 5 3 2 2 12 Michalis Faloutsos, Petros Faloutsos, Christos Faloutsos, On Power-law Relationships of the Internet Topology. In: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, p.251-262, August 30-September 03, 1999, Cambridge, Massachusetts, United States doi:10.1145/316188.316229
41 15 (Gruhl et al., 2004) 3 3 5 1 12 Daniel Gruhl, R. Guha, David Liben-Nowell, Andrew Tomkins, Information Diffusion through Blogspace. In: Proceedings of the 13th International Conference on World Wide Web, May 17-20, 2004, New York, NY, USA doi:10.1145/988672.988739
42 15 (Joachims, 1998) 6 2 3 1 12 Thorsten Joachims, Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Proceedings of the 10th European Conference on Machine Learning, p.137-142, April 21-23, 1998
43 15 (Leskovec, Adamic & Huberman, 2007) 3 2 3 4 12 Jure Leskovec, Lada A. Adamic, Bernardo A. Huberman, The Dynamics of Viral Marketing. In: Proceedings of the 7th ACM Conference on Electronic Commerce, p.228-237, June 11-15, 2006, Ann Arbor, Michigan, USA doi:10.1145/1134707.1134732
44 15 (Shi & Malik, 2000) 1 5 4 2 12 Jianbo Shi, Jitendra Malik, Normalized Cuts and Image Segmentation. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, v.22 n.8, p.888-905, August 2000 doi:10.1109/34.868688
45 15 (Sweeney, 2002) 2 3 2 5 12 Latanya Sweeney, k-anonymity: a model for protecting privacy. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, v.10 n.5, p.557-570, October 2002 doi:10.1142/S0218488502001648
46 15 (Zhou et al., 2004) 1 4 3 4 12 Dengyong Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf. Learning with local and global consistency. In: Advances in Neural Information Processing Systems, volume 14, pages 321--328, 2003.
47 16 (Breiman, 1996) 2 1 4 4 11 Leo Breiman, Bagging predictors, Machine Learning, v.24 n.2, p.123-140, Aug. 1996 doi:10.1023/A:1018054314350
48 16 (Cover & Thomas, 2006) 2 3 3 3 11 Thomas M. Cover, Joy A. Thomas, Elements of Information Theory. (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience, 2006
49 16 (Das et al., 2007) 1 4 1 5 11 Abhinandan S. Das, Mayur Datar, Ashutosh Garg, Shyam Rajaram, Google News Personalization: Scalable Online Collaborative Filtering. In: Proceedings of the 16th International Conference on World Wide Web, May 08-12, 2007, Banff, Alberta, Canada doi:10.1145/1242572.1242610
50 16 (Han et al., 2000) 2 5 3 1 11 Jiawei Han, Jian Pei, Yiwen Yin, Runying Mao, Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach. In: Data Mining and Knowledge Discovery, v.8 n.1, p.53-87, January 2004 doi:10.1023/B:DAMI.0000005258.31418.83
51 16 (Leskovec et al., 2009) 0 0 6 5 11 Jure Leskovec, Lars Backstrom, Jon M. Kleinberg, Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 28-July 01, 2009, Paris, France doi:10.1145/1557019.1557077
52 16 (Leskovec, Krause et al., 2007) 0 2 4 5 11 Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, Natalie Glance, Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 12-15, 2007, San Jose, California, USA doi:10.1145/1281192.1281239
53 16 (Richardson et al., 2007) 0 4 4 3 11 Matthew Richardson, Ewa Dominowska, Robert Ragno, Predicting Clicks: Estimating the Click-through Rate for New Ads. In: Proceedings of the 16th International Conference on World Wide Web, May 08-12, 2007, Banff, Alberta, Canada doi:10.1145/1242572.1242643
54 16 (Schölkopf & Smola, 2002) 4 1 2 4 11 Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001. ISBN 0262194759.
55 16 (Shalev-Shwartz et al., 2007) 3 1 2 5 11 Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. In: Proceedings of the 24th International Conference on Machine learning, p.807-814, June 20-24, 2007, Corvalis, Oregon doi:10.1145/1273496.1273598
56 16 (Teh et al., 2006) 4 0 3 4 11 Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical Dirichlet Processes. In: Journal of the American Statistical Association, 101(476):1566--1581, 2006.
...
...
...
...
...
...
...
...
...
Summary Total Reference Items
(per proceeding)
~2,915 ~3,280 ~3,010 ~4,256 N/A
Summary Min Reference Items
(per cited paper)
~1 ~1 ~1 ~1 N/A
Summary Average Reference Items
(per cited paper)
TBD TBD TBD TBD N/A
Summary Median Reference Items
(per cited paper)
TBD TBD TBD TBD N/A
Summary Max Reference
(per cited paper)
~14 ~9 ~13 ~17 N/A
  1. journal + conference paper
  2. includes references to first and second editions, and references to individual chapters
  3. includes references to the first edition (of 2000)