KDD 2008 References Analysis Report

From GM-RKB
Jump to navigation Jump to search

A KDD-2008 References Analysis Report is a KDD references analysis report for the KDD 2008 Proceedings.



References

2011-08-31 KDD 2008 References Analysis Report

(note: this data was extracted semi-automatically so there are likely some inaccuracies).

Sortable table
Row Identifier References Count Rank References Count Referenced Publication (short + hyperlink) Referenced Publication (full citation string)
1 1 14 (Blei, Ng & Jordan, 2003)[1] David M. Blei, Andrew Y. Ng, Michael I. Jordan, Latent Dirichlet Allocation. In: The Journal of Machine Learning Research, 3, p.993-1022, 3/1/2003 doi:10.1162/jmlr.2003.3.4-5.993
2 2 9 (Golub & Van Loan, 1996) Gene H. Golub, Charles F. Van Loan, Matrix Computations (3rd Ed.). Johns Hopkins University Press, Baltimore, MD, 1996
3 2 9 (Witten & Frank, 2005) Ian H. Witten, Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, Second Edition. In: (Morgan Kaufmann Series in Data Management Systems), Morgan Kaufmann Publishers Inc., San Francisco, CA, 2005
4 3 8 (Chang & Lin, 2001) Chih-Chung Chang and C.-J. Lin. LIBSVM: A Library for Support Vector Machines. Manual, Department of Computer Science, National Taiwan University, 2001. Software Available at: Http://www.csie.ntu.edu.tw/~cjlin/libsvm.
5 4 7 (Backstrom et al., 2006) Lars Backstrom, Dan Huttenlocher, Jon M. Kleinberg, Xiangyang Lan, Group Formation in Large Social Networks: Membership, Growth, and Evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 20-23, 2006, Philadelphia, PA, USA doi:10.1145/1150402.1150412
6 5 6 (Agrawal & Srikant, 1994) Rakesh Agrawal, Ramakrishnan Srikant, Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, p.487-499, September 12-15, 1994
7 5 6 (Agrawal & Srikant, 1995) Rakesh Agrawal, Ramakrishnan Srikant, Mining Sequential Patterns. In: Proceedings of the Eleventh International Conference on Data Engineering, p.3-14, March 06-10, 1995
8 5 6 (Joachims, 1998) Thorsten Joachims, Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Proceedings of the 10th European Conference on Machine Learning, p.137-142, April 21-23, 1998
9 5 6 (Joachims, 2006) Thorsten Joachims, Training Linear SVMs in Linear Time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 20-23, 2006, Philadelphia, PA, USA doi:10.1145/1150402.1150429
10 5 6 (Lewis et al., 2004) David D. Lewis, Yiming Yang, Tony G. Rose, Fan Li, RCV1: A New Benchmark Collection for Text Categorization Research. In: The Journal of Machine Learning Research, 5, p.361-397, 12/1/2004
11 5 6 (Yang & Pedersen, 1997) Yiming Yang, Jan O. Pedersen, A Comparative Study on Feature Selection in Text Categorization. In: Proceedings of the Fourteenth International Conference on Machine Learning, p.412-420, July 08-12, 1997
12 6 5 (Baeza-Yates & Ribeiro-Neto, 1999) Ricardo A. Baeza-Yates, Berthier Ribeiro-Neto, Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1999
13 6 5 (Faloutsos et al., 1999) Michalis Faloutsos, Petros Faloutsos, Christos Faloutsos, On Power-law Relationships of the Internet Topology. In: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, p.251-262, August 30-September 03, 1999, Cambridge, Massachusetts, United States doi:10.1145/316188.316229
14 6 5 (Forman, 2003) George Forman, An Extensive Empirical Study of Feature Selection Metrics for Text Classification. In: The Journal of Machine Learning Research, 3, 3/1/2003
15 6 5 (Hofmann, 1999) Thomas Hofmann, Probabilistic Latent Semantic Indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, p.50-57, August 15-19, 1999, Berkeley, California, United States doi:10.1145/312624.312649
16 6 5 (Joachims, 2002c) Thorsten Joachims, Optimizing Search Engines Using Clickthrough Data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada doi:10.1145/775047.775067
17 6 5 (Kempe et al., 2003) David Kempe, Jon M. Kleinberg, Éva Tardos, Maximizing the Spread of Influence through a Social Network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 24-27, 2003, Washington, D.C. doi:10.1145/956750.956769
18 6 5 (Leskovec et al., 2005) Jure Leskovec, Jon M. Kleinberg, Christos Faloutsos, Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, August 21-24, 2005, Chicago, Illinois, USA doi:10.1145/1081870.1081893
19 6 5 (McCallum & Nigam, 1998) Andrew McCallum and Kamal Nigam. A Comparison of Event Models for Naive Bayes Text Classification. In: Profeedings from the AAAI-98 Workshop on Text Categorization, Pages 41--48, Madison, WI, July 1998.
20 6 5 (Quinlan, 1993a) J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1993
21 6 5 (Watts & Strogatz, 1998) Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of Small-world Networks. In: Nature, 393:440--442, June 1998.
22 7 4 (Agrawal et al., 1993) Rakesh Agrawal, Tomasz Imielinski, Arun Swami, Mining Association Rules Between Sets of Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, p.207-216, May 25-28, 1993, Washington, D.C., United States doi:10.1145/170035.170072
23 7 4 (Agrawal & Srikant, 2000) Rakesh Agrawal, Ramakrishnan Srikant, Privacy-preserving Data Mining. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, p.439-450, May 15-18, 2000, Dallas, Texas, United States doi:10.1145/342009.335438
24 7 4 (Boyd & Vandenberghe, 2004) Stephen Boyd, Lieven Vandenberghe, Convex Optimization, Cambridge University Press, New York, NY, 2004
25 7 4 ([[Chapelle et al., 2006)[2] Olivier Chapelle, B. Scholkopf, and A. Zien. Semi-Supervised Learning. MIT Press: Cambridge, MA, 2006.
26 7 4 (Dempster et al., 1977) Arthur P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. In: Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1--38, 1977.
27 7 4 (Griffiths & Steyvers, 2004) Thomas L. Griffiths and Mark Steyvers. Finding Scientific Topics. In: Proceedings of the National Academy of Sciences, Volume 101 (suppl. 1), Pages 5228--5235, 2004.
28 7 4 (Hastie et al., 2001)[3] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of Statistical Learning. Springer, New York, NY, 2001.
29 7 4 (Joachims, 1999) Thorsten Joachims, Transductive Inference for Text Classification Using Support Vector Machines. In: Proceedings of the Sixteenth International Conference on Machine Learning, p.200-209, June 27-30, 1999
30 7 4 (Kossinets & Watts, 2006) Gueorgi Kossinets and Duncan J. Watts. Empirical Analysis of An Evolving Social Network. In: Science, 311(5757):88--90, January 2006.
31 7 4 (Lang, 1995) Ken Lang. NewsWeeder: Learning to Filter Netnews. In: Proceedings of ICML '95: Proceedings of the 12th International Conference on Machine Learning, Pages 331--339, 1995.
32 7 4 (Liu et al., 1998) Bing Liu, W. Hsu, and Y. Ma. Integrating Classification and Association Rule Mining. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, Pages 80--86, 1998.
33 7 4 (Newman, 2003) M. E. J. Newman. The Structure and Function of Complex Networks. In: SIAM Review, 45, 2:167--256, 2003.
34 7 4 (Pei et al., 2001) Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal, Meichun Hsu, PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth. In: Proceedings of the 17th International Conference on Data Engineering, p.215-224, April 02-06, 2001
35 7 4 (Schölkopf & Smola, 2002) Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, 2002.
36 7 4 (Shawe-Taylor & Cristianini, 2004) John C. Shawe-Taylor, Nello Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, New York, NY, 2004
37 7 4 (Teh et al., 2006) Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical Dirichlet Processes. In: Journal of the American Statistical Association, 101(476):1566--1581, 2006.
38 7 4 (Vapnik, 1995) Vladimir N. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc., New York, NY, 1995
39 7 4 (Zhu, 2005) Xiaojin Zhu. Semi-supervised Learning Literature Survey. Technical Report 1530, Department of Computer Sciences, University of Wisconsin, Madison, 2005.
...
...
...
...
...
2,915 Total Reference Items
(entire proceedings)
  1. journal + conference paper
  2. excludes references to specific chapters in edited volume
  3. includes first and second edition