Denoising Autoencoding System
A Denoising Autoencoding System is a feedforward network training system that implements a denoising autoencoding algorithm to solve a ...
- Context:
- It can be used to create a Stacked Denoising Autoencoding System.
- …
- Example(s):
- Counter-Example(s):
- See: Learned Neural Network.
References
2016
- http://deep-learning-tensorflow.readthedocs.io/en/latest/#denoising-autoencoder
- QUOTE: Cmd example usage:
python command_line/run_autoencoder.py --n_components 1024 --batch_size 64 --num_epochs 20 --verbose 1 --learning_rate 0.05 --corr_type masking --corr_frac 0.5 --enc_act_func sigmoid --dec_act_func sigmoid --loss_func cross_entropy --opt momentum --momentum 0.9 --main_dir dae-models --model_name dae1024
This command trains a Denoising Autoencoder on MNIST with 1024 hidden units, sigmoid activation function for the encoder and the decoder, and 50% masking noise. You can also initialize an Autoencoder to an already trained model by passing the parameters to its build_model() method.
- QUOTE: Cmd example usage: