Binomial Proportion Confidence Interval Estimate

From GM-RKB
Jump to navigation Jump to search

A Binomial Proportion Confidence Interval Estimate is a statistical interval estimate that provides a range of values within which the true probability of success in a Binomial Distribution is expected to fall (based on the outcomes of a finite number of Bernoulli trials).



References

2023

  • (Wikipedia, 2023) ⇒ https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval Retrieved:2023-11-26.
    • In statistics, a binomial proportion confidence interval is a confidence interval for the probability of success calculated from the outcome of a series of success–failure experiments (Bernoulli trials). In other words, a binomial proportion confidence interval is an interval estimate of a success probability p when only the number of experiments n and the number of successes nS are known.

      There are several formulas for a binomial confidence interval, but all of them rely on the assumption of a binomial distribution. In general, a binomial distribution applies when an experiment is repeated a fixed number of times, each trial of the experiment has two possible outcomes (success and failure), the probability of success is the same for each trial, and the trials are statistically independent. Because the binomial distribution is a discrete probability distribution (i.e., not continuous) and difficult to calculate for large numbers of trials, a variety of approximations are used to calculate this confidence interval, all with their own tradeoffs in accuracy and computational intensity.

      A simple example of a binomial distribution is the set of various possible outcomes, and their probabilities, for the number of heads observed when a coin is flipped ten times. The observed binomial proportion is the fraction of the flips that turn out to be heads. Given this observed proportion, the confidence interval for the true probability of the coin landing on heads is a range of possible proportions, which may or may not contain the true proportion. A 95% confidence interval for the proportion, for instance, will contain the true proportion 95% of the times that the procedure for constructing the confidence interval is employed.


1993

  • (Vollset, 1993) ⇒ Stein Emil Vollset. (1993). “Confidence intervals for a binomial proportion." In: Statistics in Medicine. Wiley Online Library.
    • NOTE: This paper evaluates the probabilities of 95% confidence intervals computed by various methods for binomial proportions, providing coverage over a specific range and highlighting the challenges outside this range.

2002

2001