2018 RayADistributedFrameworkforEmer
- (Moritz et al., 2018) ⇒ Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. (2018). “Ray: A Distributed Framework for Emerging AI Applications.” In: Proceedings of the 13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18).
Subject Headings: Ray; Distributed Machine Learning System.
Notes
Cited By
Quotes
Abstract
The next generation of AI applications will continuously interact with the environment and learn from these interactions. These applications impose new and demanding systems requirements, both in terms of performance and flexibility. In this paper, we consider these requirements and present Ray --- a distributed system to address them. Ray implements a unified interface that can express both task-parallel and actor-based computations, supported by a single dynamic execution engine. To meet the performance requirements, Ray employs a distributed scheduler and a distributed and fault-tolerant store to manage the system's control state. In our experiments, we demonstrate scaling beyond 1.8 million tasks per second and better performance than existing specialized systems for several challenging reinforcement learning applications.
References
;
Author | volume | Date Value | title | type | journal | titleUrl | doi | note | year | |
---|---|---|---|---|---|---|---|---|---|---|
2018 RayADistributedFrameworkforEmer | Ion Stoica Philipp Moritz Robert Nishihara Stephanie Wang Alexey Tumanov Richard Liaw Eric Liang Melih Elibol Zongheng Yang William Paul | Ray: A Distributed Framework for Emerging AI Applications |