2018 AFieldStudyofRelatedVideoRecomm
- (Zhong et al., 2018) ⇒ Yifan Zhong, Tahir Lazaro Sousa Menezes, Vikas Kumar, Qian Zhao, and F. Maxwell Harper. (2018). “A Field Study of Related Video Recommendations: Newest, Most Similar, Or Most Relevant?.” In: Proceedings of the 12th ACM Conference on Recommender Systems. ISBN:978-1-4503-5901-6 doi:10.1145/3240323.3240395
Subject Headings:
Notes
Cited By
- http://scholar.google.com/scholar?q=%222018%22+A+Field+Study+of+Related+Video+Recommendations%3A+Newest%2C+Most+Similar%2C+Or+Most+Relevant%3F
- http://dl.acm.org/citation.cfm?id=3240323.3240395&preflayout=flat#citedby
Quotes
Abstract
Many video sites recommend videos related to the one a user is watching. These recommendations have been shown to influence what users end up exploring and are an important part of a recommender system. Plenty of methods have been proposed to recommend related videos, but there has been relatively little work that compares competing strategies. We describe a field study of related video recommendations, where we deploy algorithms to recommend related movie trailers. Our results show that recency - and similarity-based algorithms yield the highest click-through rates, and that the recency-based algorithm leads to the most trailer-level engagement. Our findings suggest the potential to design non-personalized yet effective related item recommendation strategies.
References
- 1. Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, and Raghu Ramakrishnan. 2013. Content Recommendation on Web Portals. Commun. ACM 56, 6 (June 2013), 92--101. doi:10.1145/2461256.2461277
- 2. Shumeet Baluja, Rohan Seth, D. Sivakumar, Yushi Jing, Jay Yagnik, Shankar Kumar, Deepak Ravichandran, and Mohamed Aly. 2008. Video Suggestion and Discovery for Youtube: Taking Random Walks Through the View Graph. In Proceedings of the 17th International Conference on World Wide Web (WWW '08). ACM, New York, NY, USA, 895--904. doi:10.1145/1367497.1367618
- 3. Michael Bendersky, Lluis Garcia-Pueyo, Jeremiah Harmsen, Vanja Josifovski, and Dima Lepikhin. 2014. Up Next: Retrieval Methods for Large Scale Related Video Suggestion. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '14). ACM, New York, NY, USA, 1769--1778. doi:10.1145/2623330.2623344
- 4. Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for YouTube Recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys '16). ACM, New York, NY, USA, 191--198. doi:10.1145/2959100.2959190
- 5. James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi Sampath. 2010. The YouTube Video Recommendation System. In Proceedings of the Fourth ACM Conference on Recommender Systems (RecSys '10). ACM, New York, NY, USA, 293--296. doi:10.1145/1864708.1864770
- 6. Josh Dzieza. 2015. The Star Wars History of Trailers. Https://www.theverge.com/2015/12/10/9882404/star-wars-trailers-movie-marketing-youtube-disney
- 7. Cristos Goodrow. 2017. You Know What's Cool? A Billion Hours. Https://youtube.googleblog.com/2017/02/you-know-whats-cool-billion-hours.html
- 8. J. Katukuri, T. Könik, R. Mukherjee, and S. Kolay. 2014. Recommending Similar Items in Large-scale Online Marketplaces. In 2014 IEEE International Conference on Big Data (Big Data). 868--876. doi:10.1109/BigData.2014.7004317
- 9. Lisa Kernan. 2004. Coming Attractions: Reading American Movie Trailers. University of Texas Press. Google-Books-ID: 7gu0ZU7K834C.
- 10. Peter Knees and Markus Schedl. 2013. A Survey of Music Similarity and Recommendation from Music Context Data. ACM Trans. Multimedia Comput. Commun. Appl. 10, 1 (Dec. 2013), 2:1--2:21. doi:10.1145/2542205.2542206
- 11. Dilip Kumar Krishnappa, Michael Zink, Carsten Griwodz, and Pål Halvorsen. 2015. Cache-Centric Video Recommendation: An Approach to Improve the Efficiency of YouTube Caches. ACM Trans. Multimedia Comput. Commun. Appl. 11, 4 (June 2015), 48:1--48:20. doi:10.1145/2716310
- 12. Tao Mei, Bo Yang, Xian-Sheng Hua, and Shipeng Li. 2011. Contextual Video Recommendation by Multimodal Relevance and User Feedback. ACM Trans. Inf. Syst. 29, 2 (April 2011), 10:1--10:24. doi:10.1145/1961209.1961213
- 13. Theodora Nanou, George Lekakos, and Konstantinos Fouskas. 2010. The Effects of Recommendations' Presentation on Persuasion and Satisfaction in a Movie Recommender System. Multimedia Systems 16, 4-5 (Aug. 2010), 219--230. doi:10.1007/s00530-010-0190-0
- 14. Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th International Conference on World Wide Web (WWW '01). ACM, New York, NY, USA, 285--295. doi:10.1145/371920.372071
- 15. Jesse Vig, Shilad Sen, and John Riedl. 2012. The Tag Genome: Encoding Community Knowledge to Support Novel Interaction. ACM Trans. Interact. Intell. Syst. 2, 3 (Sept. 2012), 13:1--13:44. doi:10.1145/2362394.2362395
- 16. Yuan Yao and F. Maxwell Harper. 2018. Judging Similarity: A User-Centric Study of Related Item Recommendations. In Proceedings of the Twelfth ACM Conference on Recommender Systems (RecSys '18). ACM, New York, NY, USA. doi:10.1145/3240323.3240351
- 17. Renjie Zhou, Samamon Khemmarat, and Lixin Gao. 2010. The Impact of YouTube Recommendation System on Video Views. In Proceedings of the 10th ACM SIGCOMMM Conference on Internet Measurement (IMC '10). ACM, New York, NY, USA, 404--410. doi:10.1145/1879141.1879193;
Author | volume | Date Value | title | type | journal | titleUrl | doi | note | year | |
---|---|---|---|---|---|---|---|---|---|---|
2018 AFieldStudyofRelatedVideoRecomm | Qian Zhao F. Maxwell Harper Yifan Zhong Tahir Lazaro Sousa Menezes Vikas Kumar | A Field Study of Related Video Recommendations: Newest, Most Similar, Or Most Relevant? | 10.1145/3240323.3240395 | 2018 |