2017 RACELargeScaleReAdingComprehens

From GM-RKB
Jump to navigation Jump to search

Subject Headings: RACE Dataset; RACE Benchmark Task.

Notes

Cited By

Quotes

Abstract

We present RACE, a new dataset for benchmark evaluation of methods in the reading comprehension task. Collected from the English exams for middle and high school Chinese students in the age range between 12 to 18, RACE consists of near 28, 000 passages and near 100, 000 questions generated by human experts (English instructors), and covers a variety of topics which are carefully designed for evaluating the student's ability in understanding and reasoning. In particular, the proportion of questions that requires reasoning is much larger in RACE than that in other benchmark datasets for reading comprehension, and there is a significant gap between the performance of the state-of-the-art models (43%) and the ceiling human performance (95%). We hope this new dataset can serve as a valuable resource for research and evaluation in machine comprehension. The dataset is freely available at http://www.cs.cmu.edu/~glai1/data/race/ and the code is available at https://github.com/qizhex/RACE_AR_baselines .

References

BibTeX

@inproceedings{2017_RACELargeScaleReAdingComprehens,
  author    = {Guokun Lai and
               Qizhe Xie and
               Hanxiao Liu and
               Yiming Yang and
               Eduard H. Hovy},
  editor    = {Martha Palmer and
               Rebecca Hwa and
               Sebastian Riedel},
  title     = {RACE: Large-scale ReAding Comprehension Dataset From Examinations},
  booktitle = {Proceedings of the 2017 Conference on Empirical Methods in Natural
               Language Processing (EMNLP 2017)},
  address   = {Copenhagen, Denmark},
  date      = {September 9-11, 2017},
  pages     = {785--794},
  publisher = {Association for Computational Linguistics},
  year      = {2017},
  url       = {https://doi.org/10.18653/v1/d17-1082},
  doi       = {10.18653/v1/d17-1082},
}


 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2017 RACELargeScaleReAdingComprehensEduard Hovy
Yiming Yang
Guokun Lai
Qizhe Xie
Hanxiao Liu
RACE: Large-scale ReAding Comprehension Dataset From Examinations2017