2017 LearningtoDiscoverCrossDomainRe

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Generative Adversarial Network Algorithm.

Notes

Cited By

Quotes

Abstract

While humans easily recognize relations between data from different domains without any supervision, learning to automatically discover them is in general very challenging and needs many ground-truth pairs that illustrate the relations. To avoid costly pairing, we address the task of discovering cross-domain relations given unpaired data. We propose a method based on a generative adversarial network that learns to discover relations between different domains (DiscoGAN). Using the discovered relations, our proposed network successfully transfers style from one domain to another while preserving key attributes such as orientation and face identity.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2017 LearningtoDiscoverCrossDomainReTaeksoo Kim
Moonsu Cha
Hyunsoo Kim
Jung Kwon Lee
Jiwon Kim
Learning to Discover Cross-Domain Relations with Generative Adversarial Networks2017