2016 NeuralArchitectureSearchwithRei

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Neural Network Architecture.

Notes

Cited By

Quotes

Abstract

Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method, starting from scratch, can design a novel network architecture that rivals the best human-invented architecture in terms of test set accuracy. Our CIFAR-10 model achieves a test error rate of 3.84, which is only 0.1 percent worse and 1.2x faster than the current state-of-the-art model. On the Penn Treebank dataset, our model can compose a novel recurrent cell that outperforms the widely-used LSTM cell, and other state-of-the-art baselines. Our cell achieves a test set perplexity of 62.4 on the Penn Treebank, which is 3.6 perplexity better than the previous state-of-the-art.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2016 NeuralArchitectureSearchwithReiQuoc V. Le
Barret Zoph
Neural Architecture Search with Reinforcement Learning