2016 MetaProd2VecProductEmbeddingsUs

From GM-RKB
Jump to navigation Jump to search

Subject Headings:

Notes

Cited By

2017

Quotes

Abstract

We propose Meta-Prod2vec, a novel method to compute item similarities for recommendation that leverages existing item metadata. Such scenarios are frequently encountered in applications such as content recommendation, ad targeting and web search. Our method leverages past user interactions with items and their attributes to compute low-dimensional embeddings of items. Specifically, the item metadata is injected into the model as side information to regularize the item embeddings. We show that the new item representations lead to better performance on recommendation tasks on an open music dataset.

References

  • 1. Recsys 2015: Making Meaningful Restaurant Recommendations at Opentable. http://tinyurl.com/zs9at2t. Accessed: 2016-04-08.
  • 2. Venture Beat Article. http://venturebeat.com/2006/12/10/aggregate-knowledge-raises-5m-from-kleiner-on-a-roll/. Accessed: 2016-04-08.
  • 3. Deepak Agarwal, Bee-Chung Chen, Regression-based Latent Factor Models, Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, June 28-July 01, 2009, Paris, France doi:10.1145/1557019.1557029
  • 4. Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain. Neural Probabilistic Language Models. In Innovations in Machine Learning, Pages 137--186. Springer, 2006.
  • 5. Badrish Chandramouli, Justin J. Levandoski, Ahmed Eldawy, Mohamed F. Mokbel, StreamRec: A Real-time Recommender System, Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, June 12-16, 2011, Athens, Greece doi:10.1145/1989323.1989465
  • 6. H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, Et Al. Wide & Deep Learning for Recommender Systems. ArXiv Preprint ArXiv:1606.07792, 2016.
  • 7. Nemanja Djuric, Hao Wu, Vladan Radosavljevic, Mihajlo Grbovic, Narayan Bhamidipati, Hierarchical Neural Language Models for Joint Representation of Streaming Documents and their Content, Proceedings of the 24th International Conference on World Wide Web, May 18-22, 2015, Florence, Italy doi:10.1145/2736277.2741643
  • 8. Yi Fang, Luo Si, Matrix Co-factorization for Recommendation with Rich Side Information and Implicit Feedback, Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, p.65-69, October 27-27, 2011, Chicago, Illinois doi:10.1145/2039320.2039330
  • 9. * (Grbovic et al., 2015) ⇒ Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati, Jaikit Savla, Varun Bhagwan, Doug Sharp, E-commerce in Your Inbox: Product Recommendations at Scale, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 10-13, 2015, Sydney, NSW, Australia doi:10.1145/2783258.2788627
  • 10. Asela Gunawardana, Christopher Meek, A Unified Approach to Building Hybrid Recommender Systems, Proceedings of the Third ACM Conference on Recommender Systems, October 23-25, 2009, New York, New York, USA doi:10.1145/1639714.1639735
  • 11. C. C. Johnson. Logistic Matrix Factorization for Implicit Feedback Data. Distributed Machine Learning and Matrix Computations, 2014.
  • 12. Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, Nuria Oliver, Multiverse Recommendation: N-dimensional Tensor Factorization for Context-aware Collaborative Filtering, Proceedings of the Fourth ACM Conference on Recommender Systems, September 26-30, 2010, Barcelona, Spain doi:10.1145/1864708.1864727
  • 13. Yehuda Koren, Robert Bell, Chris Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer, v.42 n.8, p.30-37, August 2009 doi:10.1109/MC.2009.263
  • 14. M. Kula. Metadata Embeddings for User and Item Cold-start Recommendations. In: Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender Systems Co-located with 9th ACM Conference on Recommender Systems (RecSys 2015), Vienna, Austria, September 16--20, 2015., Pages 14--21, 2015.
  • 15. Q. V. Le and T. Mikolov. Distributed Representations of Sentences and Documents. ArXiv Preprint ArXiv:1405.4053, 2014.
  • 16. Omer Levy, Yoav Goldberg, Neural Word Embedding As Implicit Matrix Factorization, Proceedings of the 27th International Conference on Neural Information Processing Systems, p.2177-2185, December 08-13, 2014, Montreal, Canada
  • 17. Yanen Li, Jia Hu, ChengXiang Zhai, Ye Chen, Improving One-class Collaborative Filtering by Incorporating Rich User Information, Proceedings of the 19th ACM International Conference on Information and Knowledge Management, October 26-30, 2010, Toronto, ON, Canada doi:10.1145/1871437.1871559
  • 18. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word Representations in Vector Space. ArXiv Preprint ArXiv:1301.3781, 2013.
  • 19. Tomáš Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, Distributed Representations of Words and Phrases and their Compositionality, Proceedings of the 26th International Conference on Neural Information Processing Systems, p.3111-3119, December 05-10, 2013, Lake Tahoe, Nevada
  • 20. Andriy Mnih, Koray Kavukcuoglu, Learning Word Embeddings Efficiently with Noise-contrastive Estimation, Proceedings of the 26th International Conference on Neural Information Processing Systems, p.2265-2273, December 05-10, 2013, Lake Tahoe, Nevada
  • 21. Xia Ning, George Karypis, SLIM: Sparse Linear Methods for Top-N Recommender Systems, Proceedings of the 2011 IEEE 11th International Conference on Data Mining, p.497-506, December 11-14, 2011 doi:10.1109/ICDM.2011.134
  • 22. Rong Pan, Yunhong Zhou, Bin Cao, Nathan N. Liu, Rajan Lukose, Martin Scholz, Qiang Yang, One-Class Collaborative Filtering, Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, p.502-511, December 15-19, 2008 doi:10.1109/ICDM.2008.16
  • 23. J. Pennington, R. Socher, and C. D. Manning. Glove: Global Vectors for Word Representation. In EMNLP, Volume 14, Pages 1532--1543, 2014.
  • 24. Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, Lars Schmidt-Thieme, BPR: Bayesian Personalized Ranking from Implicit Feedback, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, p.452-461, June 18-21, 2009, Montreal, Quebec, Canada
  • 25. Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, Lars Schmidt-Thieme, Fast Context-aware Recommendations with Factorization Machines, Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, July 24-28, 2011, Beijing, China doi:10.1145/2009916.2010002
  • 26. Peter Romov, Evgeny Sokolov, RecSys Challenge 2015: Ensemble Learning with Categorical Features, Proceedings of the 2015 International ACM Recommender Systems Challenge, p.1-4, September 16-20, 2015, Vienna, Austria doi:10.1145/2813448.2813510
  • 27. M. Sahlgren. The Distributional Hypothesis. Italian Journal of Linguistics, 20(1):33--54, 2008.
  • 28. Ruslan Salakhutdinov, Andriy Mnih, Geoffrey Hinton, Restricted Boltzmann Machines for Collaborative Filtering, Proceedings of the 24th International Conference on Machine Learning, p.791-798, June 20-24, 2007, Corvalis, Oregon, USA doi:10.1145/1273496.1273596
  • 29. Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, David M. Pennock, Methods and Metrics for Cold-start Recommendations, Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, August 11-15, 2002, Tampere, Finland doi:10.1145/564376.564421
  • 30. R. Turrin, M. Quadrana, A. Condorelli, R. Pagano, and P. Cremonesi. 30music Listening and Playlists Dataset.
  • 31. R. Turrin, M. Quadrana, A. Condorelli, R. Pagano, and P. Cremonesi. 30music Listening and Playlists Dataset. In Poster Proceedings of the 9th ACM Conference on Recommender Systems, Sept. 2015.
  • 32. Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley, Kavita Bala, Serge Belongie, Learning Visual Clothing Style with Heterogeneous Dyadic Co-Occurrences, Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), p.4642-4650, December 07-13, 2015 doi:10.1109/ICCv.2015.527
  • 33. Shuang-Hong Yang, Bo Long, Alex Smola, Narayanan Sadagopan, Zhaohui Zheng, Hongyuan Zha, Like Like Alike: Joint Friendship and Interest Propagation in Social Networks, Proceedings of the 20th International Conference on World Wide Web, March 28-April 01, 2011, Hyderabad, India doi:10.1145/1963405.1963481;


 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2016 MetaProd2VecProductEmbeddingsUsFlavian Vasile
Elena Smirnova
Alexis Conneau
Meta-Prod2Vec: Product Embeddings Using Side-Information for Recommendation10.1145/2959100.29591602016