2016 FastFMALibraryforFactorizationM

From GM-RKB
Jump to navigation Jump to search

Subject Headings: fastFM.

Notes

Cited By

Quotes

Abstract

Factorization Machines (FM) are currently only used in a narrow range of applications and are not yet part of the standard machine learning toolbox, despite their great success in collaborative filtering and click-through rate prediction. However, Factorization Machines are a general model to deal with sparse and high dimensional features. Our Factorization Machine implementation (fastFM) provides easy access to many solvers and supports regression, classification and ranking tasks. Such an implementation simplifies the use of FM for a wide range of applications. Therefore, our implementation has the potential to improve understanding of the FM model and drive new development.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2016 FastFMALibraryforFactorizationMImmanuel BayerfastFM: A Library for Factorization Machines