2015 TheArcadeLearningEnvironmentAnE

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Arcade Learning Environment (ALE).

Notes

Cited By

Quotes

Abstract

In this extended abstract we introduce the Arcade Learning Environment (ALE): both a challenge problem and a platform and methodology for evaluating the development of general, domain-independent AI technology. ALE provides an interface to hundreds of Atari 2600 game environments, each one different, interesting, and designed to be a challenge for human players. ALE presents significant research challenges for reinforcement learning, model learning, model-based planning, imitation learning, transfer learning, and intrinsic motivation. Most importantly, it provides a rigorous testbed for evaluating and comparing approach]]es to these problems. We illustrate the promise of ALE by presenting a benchmark set of domain-independent agents designed using well-established AI techniques for both reinforcement learning and planning. In doing so, we also propose an evaluation methodology made possible by ALE, reporting empirical results on over 55 different games. We conclude with a brief update on the latest ALE developments. All of the software, including the benchmark agents, is publicly available.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2015 TheArcadeLearningEnvironmentAnEJoel Veness
Marc G. Bellemare
Yavar Naddaf
Michael Bowling
The Arcade Learning Environment: An Evaluation Platform for General Agents2015