2013 TimeAwarePointofInterestRecomme

From GM-RKB
Jump to navigation Jump to search

Subject Headings: POI Recommendation Task, Location-based Social Network.

Notes

Cited By

Quotes

Abstract

The availability of user check-in data in large volume from the rapid growing location based social networks (LBSNs) enables many important location-aware services to users. Point-of-interest (POI) recommendation is one of such services, which is to recommend places where users have not visited before. Several techniques have been recently proposed for the recommendation service. However, no existing work has considered the temporal information for POI recommendations in LBSNs. We believe that time plays an important role in POI recommendations because most users tend to visit different places at different time in a day, \ eg visiting a restaurant at noon and visiting a bar at night. In this paper, we define a new problem, namely, the time-aware POI recommendation, to recommend POIs for a given user at a specified time in a day. To solve the problem, we develop a collaborative recommendation model that is able to incorporate temporal information. Moreover, based on the observation that users tend to visit nearby POIs, we further enhance the recommendation model by considering geographical information. Our experimental results on two real-world datasets show that the proposed approach outperforms the state-of-the-art POI recommendation methods substantially.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2013 TimeAwarePointofInterestRecommeGao Cong
Quan Yuan
Zongyang Ma
Aixin Sun
Nadia Magnenat- Thalmann
Time-aware Point-of-interest Recommendation10.1145/2484028.24840302013