2013 LCARSALocationContentAwareRecom
- (Yin et al., 2013) ⇒ Hongzhi Yin, Yizhou Sun, Bin Cui, Zhiting Hu, and Ling Chen. (2013). “LCARS: A Location-content-aware Recommender System.” In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ISBN:978-1-4503-2174-7 doi:10.1145/2487575.2487608
Subject Headings:
Notes
Cited By
- http://scholar.google.com/scholar?q=%222013%22+LCARS%3A+A+Location-content-aware+Recommender+System
- http://dl.acm.org/citation.cfm?id=2487575.2487608&preflayout=flat#citedby
Quotes
Author Keywords
- Cold start; information filtering; location-based service; probabilistic generative model; recommender system; ta algorithm
Abstract
Newly emerging location-based and event-based social network services provide us with a new platform to understand users' preferences based on their activity history. A user can only visit a limited number of venues / events and most of them are within a limited distance range, so the user-item matrix is very sparse, which creates a big challenge for traditional collaborative filtering-based recommender systems. The problem becomes more challenging when people travel to a new city where they have no activity history.
In this paper, we propose LCARS, a location-content-aware recommender system that offers a particular user a set of venues (e.g., restaurants) or events (e.g., concerts and exhibitions) by giving consideration to both personal interest and local preference. This recommender system can facilitate people's travel not only near the area in which they live, but also in a city that is new to them. Specifically, LCARS consists of two components: offline modeling and online recommendation. The offline modeling part, called LCA-LDA, is designed to learn the interest of each individual user and the local preference of each individual city by capturing item co-occurrence patterns and exploiting item contents. The online recommendation part automatically combines the learnt interest of the querying user and the local preference of the querying city to produce the top - [k recommendations. To speed up this online process, a scalable query processing technique is developed by extending the classic Threshold Algorithm (TA). We evaluate the performance of our recommender system on two large-scale real data sets, DoubanEvent and Foursquare. The results show the superiority of LCARS in recommending spatial items for users, especially when traveling to new cities, in terms of both effectiveness and efficiency.
References
;
Author | volume | Date Value | title | type | journal | titleUrl | doi | note | year | |
---|---|---|---|---|---|---|---|---|---|---|
2013 LCARSALocationContentAwareRecom | Yizhou Sun Hongzhi Yin Bin Cui Zhiting Hu Ling Chen | LCARS: A Location-content-aware Recommender System | 10.1145/2487575.2487608 | 2013 |