2013 IntermediateRepresentation
- (Chow, 2013) ⇒ Fred Chow. (2013). “Intermediate Representation.” In: Queue Journal, 11(10). doi:10.1145/2542661.2544374
Subject Headings: Software Compiler, Intermediate Representation Language.
Notes
Cited By
- http://scholar.google.com/scholar?q=%22Intermediate+Representation%22+2013
- http://dl.acm.org/citation.cfm?id=2542661.2544374&preflayout=flat#citedby
Quotes
Abstract
The increasing significance of intermediate representations in compilers
Introduction
Program compilation is a complicated process. A compiler is a software program that translates a high-level source language program into a form ready to execute on a computer. Early in the evolution of compilers, designers introduced IRs (intermediate representations, also commonly called intermediate languages) to manage the complexity of the compilation process. The use of an IR as the compiler's internal representation of the program enables the compiler to be broken up into multiple phases and components, thus benefiting from modularity.
An IR is any data structure that can represent the program without loss of information so that its execution can be conducted accurately. It serves as the common interface among the compiler components. Since its use is internal to a compiler, each compiler is free to define the form and details of its IR, and its specification needs to be known only to the compiler writers. Its existence can be transient during the compilation process, or it can be output and handled as text or binary files.
…
…
Just-in-time Compilation
As the virtual machine execution model gained widespread acceptance, it became important to find ways of speeding up the execution. One method is JIT (just-in-time) compilation, also known as dynamic compilation, which improves the performance of interpreted programs by compiling them during execution into native code to speed up execution on the underlying machine. Since compilation at runtime incurs overhead that slows down the program execution, it would be prudent to take the JIT route only if there is a high likelihood that the resultant reduction in execution time more than offsets the additional compilation time. In addition, the dynamic compiler cannot spend too much time optimizing the code, as optimization incurs much greater overhead than translation to native code. To restrain the overhead caused by dynamic compilation, most JIT compilers compile only the code paths that are most frequently taken during execution.
Dynamic compilation does have a few advantages over static compilation. First, dynamic compilation can use realtime profiling data to optimize the generated code more effectively. Second, if the program behavior changes during execution, the dynamic compiler can recompile to adjust the code to the new profile. Finally, with the prevalent use of shared (or dynamic) libraries, dynamic compilation has become the only safe means of performing whole program analysis and optimization, in which the scope of compilation spans both user and library code. JIT compilation has become an indispensable component of the execution engines of many virtual machines that take IRs as input. The goal is to make the performance of programs built for machine-independent distribution approach that of native code generated by static compilers.
In recent years, computer manufacturers have come to the realization that further increases in computing performance can no longer rely on increases in clock frequency. This has given rise to special-purpose processors and coprocessors, which can be DSPs (digital signal processors), GPUs, or accelerators implemented in ASICs (application-specific integrated circuits) or FPGAs (field-programmable gate arrays). The computing platform can even be heterogeneous, where different types of computation are handed off to different types of processors, each having different instruction sets. Special languages or language extensions such as CUDA,3 OpenCL,8 and HMPP (Hybrid Multicore Parallel Programming),4 with their underlying compilers, have been designed to make it easier for programmers to derive maximum performance in a heterogeneous setting.
Because these special processors are designed to increase performance, programs must be compiled to execute in their native instructions. As the proliferation of special-purpose hardware gathered speed, it became impossible for a compiler supplier to provide customized support for the variety of processors that exist in the market or are about to emerge. In this setting, the custom hardware manufacturer is responsible for providing the back-end compiler that compiles the IR to the custom machine instructions, and platform-independent program delivery has become all the more important. In practice, the IR can be compiled earlier, at installation time or at program loading, instead of during execution. Nowadays, the term AOT (ahead-of-time), in contrast with JIT, characterizes the compilation of IRs into machine code before its execution. Whether it's JIT or AOT, however, IRs obviously play an enabling role in this new approach to providing high-performance computing platforms.
Standardizing IRs
So far, IRs have been linked to individual compiler implementations because most compilers are distinguished by the IRs they use. IRs are translatable, however, and it is possible to translate the IR of compiler A to that of compiler B, so compiler B can benefit from the work in compiler A. With the trend toward open source software in the past two decades, more and more compilers have been open sourced.[1] When a compiler becomes open source, it exposes its IR definition to the world. As the compiler's developer community grows, it has the effect of promoting its IR. Using an IR, however, is subject to the terms of its compiler's open source license, which often prohibits mixing it with other types of open source licenses. In case of licensing conflicts, special agreements need to be worked out with the license providers before such IR translations can be realized. When realized, IR translation enables collaboration between compilers.
Java bytecode is the first example of an IR with an open standard definition that is independent of compilers, because JVM is so widely accepted that it has spawned numerous compiler and VM implementations. The prevalence of JVM has led to many other languages being translated to Java bytecode,[2] but because it was originally defined to serve only the Java language, support for high-level abstractions not present in Java is either not straightforward or absent. This lack of generality limits the use of Java bytecode as a universal IR.
Because IRs can solve the object-code compatibility issue among different processors by simplifying program delivery while enabling maximum compiled-code performance on each processor, standardizing on an IR would serve the computing industry well. Experience tells us that it takes time for all involved parties to agree on a standard; most existing standards have taken years to develop, and sometimes, competing standards take time to consolidate into one. The time is ripe to start developing an IR standard. Once such a standard is in place, it will not stifle innovation as long as it is being continuously extended to capture the latest technological trends.
... …
IR Design Attributes
In conclusion, here is a summary of the important design attributes of IRs and how they pertain to the two visions discussed here. The first five attributes are shared by both visions.
…
References
;
Author | volume | Date Value | title | type | journal | titleUrl | doi | note | year | |
---|---|---|---|---|---|---|---|---|---|---|
2013 IntermediateRepresentation | Fred Chow | Intermediate Representation | 10.1145/2542661.2544374 |
- ↑ Open source compilers; http://en.wikipedia.org/wiki/List_of_compilers#Open_source_compilers.
- ↑ JVM languages; http://en.wikipedia.org/wiki/List_of_JVM_languages.