2013 ActiveSearchonGraphs

From GM-RKB
Jump to navigation Jump to search

Subject Headings:

Notes

Cited By

Quotes

Author Keywords

Abstract

Active search is an increasingly important learning problem in which we use a limited budget of label queries to discover as many members of a certain class as possible. Numerous real-world applications may be approached in this manner, including fraud detection, product recommendation, and drug discovery. Active search has model learning and exploration / exploitation features similar to those encountered in active learning and bandit problems, but algorithms for those problems do not fit active search.

Previous work on the active search problem [5] showed that the optimal algorithm requires a lookahead evaluation of expected utility that is exponential in the number of selections to be made and proposed a truncated lookahead heuristic. Inspired by the success of myopic methods for active learning and bandit problems, we propose a myopic method for active search on graphs. We suggest selecting points by maximizing a score considering the potential impact of selecting a node, meant to emulate lookahead while avoiding exponential search. We test the proposed algorithm empirically on real-world graphs and show that it outperforms popular approaches for active learning and bandit problems as well as truncated lookahead of a few steps.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2013 ActiveSearchonGraphsJeff Schneider
Xuezhi Wang
Roman Garnett
Active Search on Graphs10.1145/2487575.24876052013