2012 TestingtheSignificanceofSpatioT

From GM-RKB
Jump to navigation Jump to search

Subject Headings:

Notes

Cited By

Quotes

Author Keywords

Abstract

Dipoles represent long distance connections between the pressure anomalies of two distant regions that are negatively correlated with each other. Such dipoles have proven important for understanding and explaining the variability in climate in many regions of the world, e.g., the El Nino climate phenomenon is known to be responsible for precipitation and temperature anomalies over large parts of the world. Systematic approaches for dipole detection generate a large number of candidate dipoles, but there exists no method to evaluate the significance of the candidate teleconnections. In this paper, we present a novel method for testing the statistical significance of the class of spatio-temporal teleconnection patterns called as dipoles. One of the most important challenges in addressing significance testing in a spatio-temporal context is how to address the spatial and temporal dependencies that show up as high autocorrelation. We present a novel approach that uses the wild bootstrap to capture the spatio-temporal dependencies, in the special use case of teleconnections in climate data. Our approach to find the statistical significance takes into account the autocorrelation, the seasonality and the trend in the time series over a period of time. This framework is applicable to other problems in spatio-temporal data mining to assess the significance of the patterns.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2012 TestingtheSignificanceofSpatioTVipin Kumar
Jaya Kawale
Snigdhansu Chatterjee
Dominick Ormsby
Karsten Steinhaeuser
Stefan Liess
Testing the Significance of Spatio-temporal Teleconnection Patterns10.1145/2339530.23396342012