2012 RolXStructuralRoleExtractionMin

From GM-RKB
Jump to navigation Jump to search

Subject Headings:

Notes

Cited By

Quotes

Author Keywords

Abstract

Given a network, intuitively two nodes belong to the same role if they have similar structural behavior. Roles should be automatically determined from the data, and could be, for example, “clique-members", “periphery-nodes", etc. Roles enable numerous novel and useful network-mining tasks, such as sense-making, searching for similar nodes, and node classification. This paper addresses the question: Given a graph, how can we automatically discover roles for nodes? We propose RolX (Role eXtraction), a scalable (linear in the number of edges), unsupervised learning approach for automatically extracting structural roles from general network data. We demonstrate the effectiveness of RolX on several network-mining tasks: from exploratory data analysis to network transfer learning. Moreover, we compare network role discovery with network community discovery. We highlight fundamental differences between the two (e.g., roles generalize across disconnected networks, communities do not); and show that the two approaches are complimentary in nature.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2012 RolXStructuralRoleExtractionMinSugato Basu
Christos Faloutsos
Lei Li
Leman Akoglu
Hanghang Tong
Keith Henderson
Tina Eliassi-Rad
Brian Gallagher
Danai Koutra
RolX: Structural Role Extraction & Mining in Large Graphs10.1145/2339530.23397232012