2012 MiningRecentTemporalPatternsfor
- (Batal et al., 2012) ⇒ Iyad Batal, Dmitriy Fradkin, James Harrison, Fabian Moerchen, and Milos Hauskrecht. (2012). “Mining Recent Temporal Patterns for Event Detection in Multivariate Time Series Data.” In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2012). ISBN:978-1-4503-1462-6 doi:10.1145/2339530.2339578
Subject Headings: Outlier Detection.
Notes
Cited By
- http://scholar.google.com/scholar?q=%222012%22+Mining+Recent+Temporal+Patterns+for+Event+Detection+in+Multivariate+Time+Series+Data
- http://dl.acm.org/citation.cfm?id=2339530.2339578&preflayout=flat#citedby
Quotes
Author Keywords
- Event detection; learning; patient classification; temporal abstractions; temporal pattern mining; time-interval patterns
Abstract
Improving the performance of classifiers using pattern mining techniques has been an active topic of data mining research. In this work we introduce the recent temporal pattern mining framework for finding predictive patterns for monitoring and event detection problems in complex multivariate time series data. This framework first converts time series into time-interval sequences of temporal abstractions. It then constructs more complex temporal patterns backwards in time using temporal operators. We apply our framework to health care data of 13, 558 diabetic patients and show its benefits by efficiently finding useful patterns for detecting and diagnosing adverse medical conditions that are associated with diabetes.
References
- 1. Rakesh Agrawal, Ramakrishnan Srikant, Fast Algorithms for Mining Association Rules in Large Databases, Proceedings of the 20th International Conference on Very Large Data Bases, p.487-499, September 12-15, 1994
- 2. Rakesh Agrawal, Ramakrishnan Srikant, Mining Sequential Patterns, Proceedings of the Eleventh International Conference on Data Engineering, p.3-14, March 06-10, 1995
- 3. James F. Allen, Towards a General Theory of Action and Time, Artificial Intelligence, v.23 n.2, p.123-154, July 1984 doi:10.1016/0004-3702(84)90008-0
- 4. Iyad Batal, Milos Hauskrecht, A Supervised Time Series Feature Extraction Technique Using DCT and DWT, Proceedings of the 2009 International Conference on Machine Learning and Applications, p.735-739, December 13-15, 2009 doi:10.1109/ICMLA.2009.13
- 5. Iyad Batal, Hamed Valizadegan, Gregory F. Cooper, Milos Hauskrecht, A Pattern Mining Approach for Classifying Multivariate Temporal Data, Proceedings of the 2011 IEEE International Conference on Bioinformatics and Biomedicine, p.358-365, November 12-15, 2011 doi:10.1109/BIBM.2011.39
- 6. Sam Blasiak, Huzefa Rangwala, A Hidden Markov Model Variant for Sequence Classification, Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, July 16-22, 2011, Barcelona, Catalonia, Spain doi:10.5591/978-1-57735-516-8/IJCAI11-203
- 7. V. Chandola, E. Eilertson, L. Ertoz, G. Simon, and V. Kumar. Data Warehousing and Data Mining Techniques for Computer Security, Chapter: Data Mining for Cyber Security. Springer, 2006.
- 8. Themis P. Exarchos, Markos G. Tsipouras, Costas Papaloukas, Dimitrios I. Fotiadis, A Two-stage Methodology for Sequence Classification based on Sequential Pattern Mining and Optimization, Data & Knowledge Engineering, v.66 n.3, p.467-487, September, 2008 doi:10.1016/j.datak.2008.05.007
- 9. S. Guttormsson, I. Marks, R.J., M. El-Sharkawi, and I. Kerszenbaum. Elliptical Novelty Grouping for on-line Short-turn Detection of Excited Running Rotors. IEEE Transactions on Energy Conversion, 1999.
- 10. M. Hauskrecht, M. Valko, I. Batal, G. Clermont, S. Visweswaram, and G. Cooper. Conditional Outlier Detection for Clinical Alerting. In: Proceedings of AMIA, 2010.
- 11. F. Höppner. Knowledge Discovery from Sequential Data. PhD Thesis, Technical University Braunschweig, Germany, 2003.
- 12. Georgiana Ifrim, Carsten Wiuf, Bounded Coordinate-descent for Biological Sequence Classification in High Dimensional Predictor Space, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 21-24, 2011, San Diego, California, USA doi:10.1145/2020408.2020519
- 13. Lei Li, B. Aditya Prakash, Christos Faloutsos, Parsimonious Linear Fingerprinting for Time Series, Proceedings of the VLDB Endowment, v.3 n.1-2, September 2010
- 14. Fabian Moerchen, Algorithms for Time Series Knowledge Mining, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 20-23, 2006, Philadelphia, PA, USA doi:10.1145/1150402.1150485
- 15. R. Moskovitch and Y. Shahar. Medical Temporal-knowledge Discovery via Temporal Abstraction. In: Proceedings of AMIA, 2009.
- 16. Spiros Papadimitriou, Jimeng Sun, Christos Faloutsos, Streaming Pattern Discovery in Multiple Time-series, Proceedings of the 31st International Conference on Very Large Data Bases, August 30-September 02, 2005, Trondheim, Norway
- 17. Panagiotis Papapetrou, George Kollios, Stan Sclaroff, Dimitrios Gunopulos, Discovering Frequent Arrangements of Temporal Intervals, Proceedings of the Fifth IEEE International Conference on Data Mining, p.354-361, November 27-30, 2005 doi:10.1109/ICDM.2005.50
- 18. Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal, Meichun Hsu, PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth, Proceedings of the 17th International Conference on Data Engineering, p.215-224, April 02-06, 2001
- 19. Jian Pei, Jiawei Han, Wei Wang, Constraint-based Sequential Pattern Mining: The Pattern-growth Methods, Journal of Intelligent Information Systems, v.28 n.2, p.133-160, April 2007 doi:10.1007/s10844-006-0006-z
- 20. C. Ratanamahatana and E. J. Keogh. Three Myths About Dynamic Time Warping Data Mining. In: Proceedings of the SIAM International Conference on Data Mining (SDM), 2005.
- 21. Yuval Shahar, A Framework for Knowledge-based Temporal Abstraction, Artificial Intelligence, v.90 n.1-2, p.79-133, Feb. 1997 doi:10.1016/S0004-3702(96)00025-2
- 22. Po-shan Kam, Ada Wai-Chee Fu, Discovering Temporal Patterns for Interval-Based Events, Proceedings of the Second International Conference on Data Warehousing and Knowledge Discovery, p.317-326, September 04-06, 2000
- 23. Abhinav Srivastava, Amlan Kundu, Shamik Sural, Arun Majumdar, Credit Card Fraud Detection Using Hidden Markov Model, IEEE Transactions on Dependable and Secure Computing, v.5 n.1, p.37-48, January 2008 doi:10.1109/TDSC.2007.70228
- 24. Douglas L. Vail, Manuela M. Veloso, John D. Lafferty, Conditional Random Fields for Activity Recognition, Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, May 14-18, 2007, Honolulu, Hawaii doi:10.1145/1329125.1329409
- 25. M. Valko and M. Hauskrecht. Feature Importance Analysis for Patient Management Decisions. In: Proceedings of MedInfo, 2010.
- 26. Edi Winarko, John F. Roddick, ARMADA - An Algorithm for Discovering Richer Relative Temporal Association Rules from Interval-based Data, Data & Knowledge Engineering, v.63 n.1, p.76-90, October, 2007 doi:10.1016/j.datak.2006.10.009
- 27. Shin-Yi Wu, Yen-Liang Chen, Mining Nonambiguous Temporal Patterns for Interval-Based Events, IEEE Transactions on Knowledge and Data Engineering, v.19 n.6, p.742-758, June 2007 doi:10.1109/TKDE.2007.190613
- 28. Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, Chotirat Ann Ratanamahatana, Fast Time Series Classification Using Numerosity Reduction, Proceedings of the 23rd International Conference on Machine Learning, p.1033-1040, June 25-29, 2006, Pittsburgh, Pennsylvania doi:10.1145/1143844.1143974
- 29. Kiyoung Yang, Cyrus Shahabi, A PCA-based Similarity Measure for Multivariate Time Series, Proceedings of the 2nd ACM International Workshop on Multimedia Databases, November 13-13, 2004, Washington, DC, USA doi:10.1145/1032604.1032616
- 30. M. Yen Lin and S. Yin Lee. Fast Discovery of Sequential Patterns through Memory Indexing and Database Partitioning. Journal Information Science and Engineering, 21:109--128, 2005.
- 31. Mohammed J. Zaki, SPADE: An Efficient Algorithm for Mining Frequent Sequences, Machine Learning, v.42 n.1/2, p.31-60, Jan. 2001 doi:10.1023/A:1007652502315
- 32. Mohammed J. Zaki, Scalable Algorithms for Association Mining, IEEE Transactions on Knowledge and Data Engineering, v.12 n.3, p.372-390, May 2000 doi:10.1109/69.846291;
Author | volume | Date Value | title | type | journal | titleUrl | doi | note | year | |
---|---|---|---|---|---|---|---|---|---|---|
2012 MiningRecentTemporalPatternsfor | Fabian Moerchen Dmitriy Fradkin Iyad Batal James Harrison Milos Hauskrecht | Mining Recent Temporal Patterns for Event Detection in Multivariate Time Series Data | 10.1145/2339530.2339578 | 2012 |