2011 CostAwareTravelTourRecommendati

From GM-RKB
Jump to navigation Jump to search

Subject Headings:

Notes

Cited By

Quotes

Author Keywords

Abstract

Advances in tourism economics have enabled us to collect massive amounts of travel tour data. If properly analyzed, this data can be a source of rich intelligence for providing real-time decision making and for the provision of travel tour recommendations. However, tour recommendation is quite different from traditional recommendations, because the tourist's choice is directly affected by the travel cost, which includes the financial cost and the time. To that end, in this paper, we provide a focused study of cost-aware tour recommendation. Along this line, we develop two cost-aware latent factor models to recommend travel packages by considering both the travel cost and the tourist's interests. Specifically, we first design a cPMF model, which models the tourist's cost with a 2-dimensional vector. Also, in this cPMF model, the tourist's interests and the travel cost are learnt by exploring travel tour data. Furthermore, in order to model the uncertainty in the travel cost, we further introduce a Gaussian prior into the cPMF model and develop the GcPMF model, where the Gaussian prior is used to express the uncertainty of the travel cost. Finally, experiments on real-world travel tour data show that the cost-aware recommendation models outperform state-of-the-art latent factor models with a significant margin. Also, the GcPMF model with the Gaussian prior can better capture the impact of the uncertainty of the travel cost, and thus performs better than the cPMF model.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2011 CostAwareTravelTourRecommendatiJian Chen
Hui Xiong
Alexander Tuzhilin
Qi Liu
Yong Ge
Cost-aware Travel Tour Recommendation10.1145/2020408.20205682011