2010 TrainingandTestingLowDegreePoly
- (Chang et al., 2010) ⇒ Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, and Chih-Jen Lin. (2010). “Training and Testing Low-degree Polynomial Data Mappings via Linear SVM.” In: The Journal of Machine Learning Research, 11.
Subject Headings: Low-Degree Polynomial Conjunctions.
Notes
Cited By
- http://scholar.google.com/scholar?q=%222010%22+Training+and+Testing+Low-degree+Polynomial+Data+Mappings+via+Linear+SVM
- http://dl.acm.org/citation.cfm?id=1756006.1859899&preflayout=flat#citedby
Quotes
Abstract
Kernel techniques have long been used in SVM to handle linearly inseparable problems by transforming data to a high dimensional space, but training and testing large data sets is often time consuming. In contrast, we can efficiently train and test much larger data sets using linear SVM without kernels. In this work, we apply fast linear-SVM methods to the explicit form of polynomially mapped data and investigate implementation issues. The approach enjoys fast training and time, but may sometimes achieve accuracy close to that of using highly nonlinear kernels. Empirical experiments show that the proposed method is useful for certain large-scale data sets. We successfully apply the proposed method to a natural language processing (NLP) application by improving the testing accuracy under some training / testing speed requirements.
References
;
Author | volume | Date Value | title | type | journal | titleUrl | doi | note | year | |
---|---|---|---|---|---|---|---|---|---|---|
2010 TrainingandTestingLowDegreePoly | Chih-Jen Lin Cho-Jui Hsieh Kai-Wei Chang Yin-Wen Chang Michael Ringgaard | Training and Testing Low-degree Polynomial Data Mappings via Linear SVM | 2010 |