2010 EvolutionaryHierarchicalDirichl

From GM-RKB
Jump to navigation Jump to search

Subject Headings:

Notes

Cited By

Quotes

Author Keywords

Abstract

Mining cluster evolution from multiple correlated time-varying text corpora is important in exploratory text analytics. In this paper, we propose an approach called evolutionary hierarchical Dirichlet processes (EvoHDP) to discover interesting cluster evolution patterns from such text data. We formulate the EvoHDP as a series of hierarchical Dirichlet processes (HDP) by adding time dependencies to the adjacent epochs, and propose a cascaded Gibbs sampling scheme to infer the model. This approach can discover different evolving patterns of clusters, including emergence, disappearance, evolution within a corpus and across different corpora. Experiments over synthetic and real-world multiple correlated time-varying data sets illustrate the effectiveness of EvoHDP on discovering cluster evolution patterns.

References

,

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2010 EvolutionaryHierarchicalDirichlChangshui Zhang
Shixia Liu
Yangqiu Song
Jianwen Zhang
Evolutionary Hierarchical Dirichlet Processes for Multiple Correlated Time-varying CorporaKDD-2010 Proceedingshttp://research.microsoft.com/en-us/um/people/shliu/p1079-zhang.pdf10.1145/1835804.18359402010