2009 DifferentiallyPrivateRecommende

From GM-RKB
Jump to navigation Jump to search

Subject Headings:

Notes

Cited By

Quotes

Author Keywords

Differential Privacy, Netflix, Recommender Systems

Abstract

We consider the problem of producing recommendations from collective user behavior while simultaneously providing guarantees of privacy for these users. Specifically, we consider the Netflix Prize data set, and its leading algorithms, adapted to the framework of differential privacy.
Unlike prior privacy work concerned with cryptographically securing the computation of recommendations, differential privacy constrains a computation in a way that precludes any inference about the underlying records from its output. Such algorithms necessarily introduce uncertainty i.e., noise to computations, trading accuracy for privacy.
We find that several of the leading approaches in the Netflix Prize competition can be adapted to provide differential privacy, without significantly degrading their accuracy. To adapt these algorithms, we explicitly factor them into two parts, an aggregation/learning phase that can be performed with differential privacy guarantees, and an individual recommendation phase that uses the learned correlations and an individual's data to provide personalized recommendations. The adaptations are non-trivial, and involve both careful analysis of the per-record sensitivity of the algorithms to calibrate noise, as well as new post-processing steps to mitigate the impact of this noise.
We measure the empirical trade-off between accuracy and privacy in these adaptations, and find that we can provide non-trivial formal privacy guarantees while still outperforming the Cinematch baseline Netflix provides.

References

,

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2009 DifferentiallyPrivateRecommendeFrank McSherry
Ilya Mironov
Differentially Private Recommender Systems: Building Privacy Into the NetKDD-2009 Proceedings10.1145/1557019.15570902009