2009 ConciseIntegerLinearProgramming

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Integer Linear Program.

Notes

Cited By

Quotes

Abstract

We formulate the problem of non-projective dependency parsing as a polynomial-sized integer linear program. Our formulation is able to handle non-local output features in an efficient manner; not only is it compatible with prior knowledge encoded as hard constraints, it can also learn soft constraints from data. In particular, our model is able to learn correlations among neighboring arcs (siblings and grandparents), word valency, and tendencies toward nearly-projective parses. The model parameters are learned in a max-margin framework by employing a linear programming relaxation. We evaluate the performance of our parser on data in several natural languages, achieving improvements over existing state-of-the-art methods.

References

,

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2009 ConciseIntegerLinearProgrammingEric P. Xing
André Martins
Noah A. Smith
Concise Integer Linear Programming Formulations for Dependency Parsing