2008 PartialLeastSquaresRegressionfo

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Partial Least Squares Regression.

Notes

Cited By

Quotes

Abstract

Attributed graphs are increasingly more common in many application domains such as chemistry, biology and text processing. A central issue in graph mining is how to collect informative subgraph patterns for a given learning task. We propose an iterative mining method based on partial least squares regression (PLS). To apply PLS to graph data, a sparse version of PLS is developed first and then it is combined with a weighted pattern mining algorithm. The mining algorithm is iteratively called with different weight vectors, creating one latent component per one mining call. Our method, graph PLS, is efficient and easy to implement, because the weight vector is updated with elementary matrix calculations. In experiments, our graph PLS algorithm showed competitive prediction accuracies in many chemical datasets and its efficiency was significantly superior to graph boosting (gBoost) and the naive method based on frequent graph mining.

References

,

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2008 PartialLeastSquaresRegressionfoHiroto Saigo
Nicole Krämer
Koji Tsuda
Partial Least Squares Regression for Graph MiningKDD-2008 Proceedings10.1145/1401890.14019612008