2007 ItemRankARandomWalkbasedScoring

From GM-RKB
Jump to navigation Jump to search

Subject Headings: NN-based Collaborative Filtering.

Notes

Cited By

2011

Quotes

Abstract

Recommender systems are an emerging technology that helps consumers to find interesting products. A recommender system makes personalized product suggestions by extracting knowledge from the previous users interactions. In this paper, we present “ItemRank", a random-walk based scoring algorithm, which can be used to rank products according to expected user preferences, in order to recommend top-rank items to potentially interested users. We tested our algorithm on a standard database, the MovieLens data set, which contains data collected from a popular recommender system on movies, that has been widely exploited as a benchmark for evaluating recently proposed approaches to recommender system (e.g. (Fouss et al., 2005; Sarwar et al., 2002). We compared ItemRank with other state-of-the-art ranking techniques (in particular the algorithms described in (Fouss et al., 2005). Our experiments show that ItemRank performs better than the other algorithms we compared to and, at the same time, it is less complex than other proposed algorithms with respect to memory usage and computational cost too.

References

  • 1. M. Brand. A Random Walks Perspective on Maximizing Satisfaction and Profit. In 2005 SIAM International Conference on Data Mining, 2005.
  • 2. John S. Breese, David Heckerman, Carl Kadie, Empirical Analysis of Predictive Algorithms for Collaborative Filtering, Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, p.43-52, July 24-26, 1998, Madison, Wisconsin
  • 3. John Canny, Collaborative Filtering with Privacy, Proceedings of the 2002 IEEE Symposium on Security and Privacy, p.45, May 12-15, 2002
  • 4. P. Chebotarev and E. Shamis. The Matrix-forest Theorem and Measuring Relations in Small Social Groups. Automation and Remote Control, 58(9):15051514, 1997.
  • 5. P. Chebotarev and E. Shamis. On Proximity Measures for Graph Vertices. Automation and Remote Control, 59(10):1443-1459, 1998.
  • 6. Francois Fouss, Alain Pirotte, Marco Saerens, A Novel Way of Computing Similarities Between Nodes of a Graph, with Application to Collaborative Recommendation, Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, p.550-556, September 19-22, 2005 doi:10.1109/WI.2005.9
  • 7. Ken Goldberg, Theresa Roeder, Dhruv Gupta, Chris Perkins, Eigentaste: A Constant Time Collaborative Filtering Algorithm, Information Retrieval, v.4 n.2, p.133-151, July 2001 doi:10.1023/A:1011419012209
  • 8. G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins University Press, Third Edition, 1996.
  • 9. Miha Grčar, Dunja Mladenič, Blaž Fortuna, Marko Grobelnik, Data Sparsity Issues in the Collaborative Filtering Framework, Proceedings of the 7th International Conference on Knowledge Discovery on the Web: Advances in Web Mining and Web Usage Analysis, p.58-76, August 21, 2005, Chicago, IL doi:10.1007/11891321_4
  • 10. Z. Gyongyi, H. Garcia-Molina, and J. Pedersen. Combating Web Spam with Trustrank. Technical Report, Stanford University, 2004.
  • 11. Taher H. Haveliwala, Topic-sensitive PageRank, Proceedings of the 11th International Conference on World Wide Web, May 07-11, 2002, Honolulu, Hawaii, USA doi:10.1145/511446.511513
  • 12. Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, Gene H. Golub, Extrapolation Methods for Accelerating PageRank Computations, Proceedings of the 12th International Conference on World Wide Web, May 20-24, 2003, Budapest, Hungary doi:10.1145/775152.775190
  • 13. Sepandar D. Kamvar, Mario T. Schlosser, Hector Garcia-Molina, The Eigentrust Algorithm for Reputation Management in P2P Networks, Proceedings of the 12th International Conference on World Wide Web, May 20-24, 2003, Budapest, Hungary doi:10.1145/775152.775242
  • 14. A. Langville and C. Meyer. Deeper Inside Pagerank. Internet Mathematics, 1(3):335-380, 2003.
  • 15. B. Miller, J. Riedl, and J. Konstan. Grouplens for Usenet: Experiences in Applying Collaborative Filtering to a Social Information System. In C. Leug and D. Fisher, Editors, From Usenet to CoWebs: Interacting with Social Information Spaces. Springer-Verlag, 2002.
  • 16. J. Norris. Markov Chains. Cambridge University Press, 1997.
  • 17. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. Technical report, Stanford University, 1998.
  • 18. Badrul Sarwar, George Karypis, Joseph Konstan, John Riedl, Item-based Collaborative Filtering Recommendation Algorithms, Proceedings of the 10th International Conference on World Wide Web, p.285-295, May 01-05, 2001, Hong Kong, Hong Kong doi:10.1145/371920.372071
  • 19. B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Recommender Systems for Large-scale E-commerce: Scalable Neighborhood Formation Using Clustering. In Fifth International Conference on Computer and Information Technology, 2002.
  • 20. J. Ben Schafer, Joseph A. Konstan, John Riedl, E-Commerce Recommendation Applications, Data Mining and Knowledge Discovery, v.5 n.1-2, p.115-153, January-April 2001 doi:10.1023/A:1009804230409
  • 21. Upendra Shardanand, Pattie Maes, Social Information Filtering: Algorithms for Automating “word of Mouth”, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, p.210-217, May 07-11, 1995, Denver, Colorado, USA doi:10.1145/223904.223931
  • 22. S. Siegel and J. Castellan. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, 1988.
  • 23. Scott White, Padhraic Smyth, Algorithms for Estimating Relative Importance in Networks, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 24-27, 2003, Washington, D.C. doi:10.1145/956750.956782;


 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2007 ItemRankARandomWalkbasedScoringMarco Gori
Augusto Pucci
ItemRank: A Random-walk based Scoring Algorithm for Recommender Engines2007