2007 ACorrelatedTopicModelOfScience

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Topic Modeling Task, Scientific Literature.

Notes

Cited By

~161 http://scholar.google.com/scholar?cites=7877289720292257931

Quotes

Abstract

Topic models, such as latent Dirichlet allocation (LDA), can be useful tools for the statistical analysis of document collections and other discrete data. The LDA model assumes that the words of each document arise from a mixture of topics, each of which is a distribution over the vocabulary. A limitation of LDA is the inability to model topic correlation even though, for example, a document about genetics is more likely to also be about disease than X-ray astronomy. This limitation stems from the use of the Dirichlet distribution to model the variability among the topic proportions. In this paper we develop the correlated topic model (CTM), where the topic proportions exhibit correlation via the logistic normal distribution [J. Roy. Statist. Soc. Ser. B 44 (1982) 139–177]. We derive a fast variational inference algorithm for approximate posterior inference in this model, which is complicated by the fact that the logistic normal is not conjugate to the multinomial. We apply the CTM to the articles from Science published from 1990–1999, a data set that comprises 57M words. The CTM gives a better fit of the data than LDA, and we demonstrate its use as an exploratory tool of large document collections.


References


,

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2007 ACorrelatedTopicModelOfScienceJohn D. LaffertyA Correlated Topic Model of Sciencehttp://www.cs.princeton.edu/~blei/papers/BleiLafferty2007.pdf10.1214/07-AOAS114