2006 TreeKernelEngineeringForPropositionReranking

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Tree Kernel Function, Semantic Role Labeling Task

Notes

Cited By

Quotes

Abstract

Recent work on the design of automatic systems for semantic role labeling has shown that such task is complex from both modeling and implementation point of views. Tree kernels alleviate such complexity as kernel functions generate features automatically and require less software development for data pre-processing. In this paper, we study several tree kernel approaches for boundary detection, argument classification and, most notably, proposition re-ranking. The comparative experiments on Support Vector Machines with such kernels on the CoNLL 2005 dataset show that very simple tree manipulations trigger automatic feature engineering that highly improves accuracy and efficiency in every SRL phase.

References

  • 1. Johnson, C.R., Fillmore, C.J.: The framenet tagset for frame-semantic and syntactic coding of predicate-argument structure. In: Proceedings of NAACL 2000, Seattle WA. (2000)

2. Kingsbury, P., Palmer, M.: From Treebank to PropBank. In: Proceedings of LREC’02, Las Palmas, Spain (2002) 3. Daniel Gildea, Jurasfky, D.: Automatic labeling of semantic roles. Computational Linguistic 28(3) (2002) 496–530 4. Carreras, X., M`arquez, L.: Introduction to the CoNLL-2005 shared task: Semantic role labeling. In: Proceedings of CoNLL-2005, Ann Arbor, Michigan, (2005) 5. Alessandro Moschitti: A study on convolution kernels for shallow semantic parsing. In: Proceedings of ACL’04, Barcelona, Spain (2004) 6. Pradhan, S., Hacioglu, K., Krugler, V., Ward, W., Martin, J.H., Jurafsky, D.: Support vector learning for semantic argument classification. Machine Learning Journal (2005)

  • 7. Alessandro Moschitti, B. Coppola, D. Pighin, Roberto Basili. (2005). “Engineering of Syntactic Features for Shallow Semantic Parsing.” In: Proceedings of the ACL 2005 Workshop on Feature Engineering for Machine Learning in Natural Language Processing. (2005)
  • 8. Alessandro Moschitti, D. Pighin, and Roberto Basili. (2006). “Tree Kernel Engineering in Semantic Role Labeling Systems.” In: Proceedings of the EACL 2006 Workshop on Learning Structured Information in Natural Language Applications. (2006)

9. Eugene Charniak : A maximum-entropy-inspired parser. In: Proceedings of the 1st Meeting of NAACL. (2000) 10. Haghighi, A., Toutanova, K., Christopher D. Manning: A joint model for semantic role labeling. In: Proceedings of CoNLL-2005, Ann Arbor, Michigan. (2005) 11. Alessandro Moschitti, D. Pighin, and Roberto Basili. (2006). “Semantic Role Labeling via Tree Kernel Joint Inference.” In: Proceedings of CoNLL-X. (2006) 12. Alessandro Moschitti. (2006). “Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees.” In: Proceedings of ECML 2006. 13. Thorsten Joachims: Making large-scale SVM learning practical. In Bernhard Schölkopf, Burges, C., Smola, A., eds.: Advances in Kernel Methods - Support Vector Learning. (1999),


 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2006 TreeKernelEngineeringForPropositionRerankingRoberto Basili
Alessandro Moschitti
Daniele Pighin
Tree Kernel Engineering for Proposition Re-rankinghttp://www.inf.uni-konstanz.de/mlg2006/17.pdf