2006 AdvancesinGaussianProcesses

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Gaussian Process Model, Gaussian Process Regression.

Notes

Cited By

Quotes

The Gaussian Distribution

The Gaussian distribution is given by

[math]\displaystyle{ \mathcal{p}(\mathbf{x}|µ, \Sigma) = \mathcal{N}(µ,\Sigma) = (2\pi)^{-D/2}|\Sigma|^{-1/2} \exp\bigl(-\frac{1}{2}(x - µ))^T \Sigma^{-1}(x - µ)\bigr) }[/math]

where [math]\displaystyle{ µ }[/math] is the mean vector and [math]\displaystyle{ \Sigma }[/math] the covariance matrix.

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.

What is a Gaussian Process?

A Gaussian process is a generalization of a multivariate Gaussian distribution to infinitely many variables.

Informally: infinitely long vector [math]\displaystyle{ \simeq }[/math] function

Definition: a Gaussian process is a collection of random variables, any finite number of which have (consistent) Gaussian distributions. �

A Gaussian distribution is fully specified by a mean vector, µ, and covariance matrix [math]\displaystyle{ \Sigma }[/math]:

[math]\displaystyle{ \mathbf{f} = (f_1,...,f_n)^T \sim \mathcal{N}(µ, \Sigma), \text{indexes} i = 1,...,n }[/math]

A Gaussian process is fully specified by a mean function m(x) and covariance function k(x,x'):

[math]\displaystyle{ f(x) \sim \mathcal{GP}(m(x), k(x,x')), \text{indexes} x }[/math]

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2006 AdvancesinGaussianProcessesCarl Edward RasmussenAdvances in Gaussian Processes2006