2006 AHybridConvolTreeKernelForSRL
- (CheZL06) ⇒ W. Che, M. Zhang, T. Liu, S. Li. (2006). “A Hybrid Convolution Tree Kernel for Semantic Role Labeling.” In: Proceedings of COLING/ACL-2006.
Subject Headings: Semantic Role Labelling, Convolution Tree Kernel
Notes
Cited By
Quotes
Abstract
“A hybrid convolution tree kernel is proposed in this paper to effectively model syntactic structures for semantic role labeling (SRL). The hybrid kernel consists of two individual convolution kernels: a Path kernel, which captures predicateargument link features, and a Constituent Structure kernel, which captures the syntactic structure features of arguments. Evaluation on the datasets of CoNLL-2005 SRL shared task shows that the novel hybrid convolution tree kernel outperforms the previous tree kernels. We also combine our new hybrid tree kernel based method with the standard rich flat feature based method. The experimental results show that the combinational method can get better performance than each of them individually.
Convolution Tree Kernels for SRL
- "Moschitti (2004) proposed to apply convolution tree kernels (Collins and Duffy, 2001) to SRL. He selected portions of syntactic parse trees, which include salient sub-structures of predicatearguments, to define convolution kernels for the task of predicate argument classification. This portions selection method of syntactic parse trees is named as predicate-arguments feature (PAF) kernel. Figure 2 illustrates the PAF kernel feature space of the predicate buy and the argument Arg1 in the circled sub-structure. The kind of convolution tree kernel is similar to Collins and Duffy (2001)’s tree kernel except the sub-structure selection strategy. Moschitti (2004) only selected the relative portion between a predicate and an argument."
References
- Collin F. Baker, Charles J. Fillmore, and John B. Lowe. (1998). The Berkeley FrameNet project. In: Proceedings of the ACL-Coling-1998, pages 86–90.
- Xavier Carreras and Llu´is M`arquez. (2004). Introduction to the CoNLL-2004 shared task: Semantic role labeling. In: Proceedings of CoNLL-2004, pages 89– 97.
- Xavier Carreras and Llu´is M`arquez. (2005). Introduction to the CoNLL-2005 shared task: Semantic role labeling. In: Proceedings of CoNLL-2005, pages 152–164.
- Eugene Charniak. (2000). A maximum-entropy inspired parser. In: Proceedings of NAACL-2000.
- Hai Leong Chieu and Hwee Tou Ng. (2003). Named entity recognition with a maximum entropy approach. In: Proceedings of CoNLL-2003, pages 160–163.
- Nello Cristianini and John Shawe-Taylor. (2000). An Introduction to Support Vector Machines. Cambridge University Press, Cambridge University.
- Aron Culotta and Jeffrey Sorensen. (2004). Dependency tree kernels for relation extraction. In: Proceedings ofACL 2004, pages 423–429.
- Yoav Freund, and Robert E. Schapire. (1998). Large margin classification using the perceptron algorithm. In Computational Learning Theory, pages 209–217.
- Daniel Gildea and Daniel Jurafsky. (2002). Automatic labeling of semantic roles. Computational Linguistics, 28(3):245–288.
- Daniel Gildea and Martha Palmer. (2002). The necessity of parsing for predicate argument recognition. In: Proceedings of ACL-2002, pages 239–246.
- Jes´us Giménez and Llu´is M`arquez. (2003). Fast and accurate part-of-speech tagging: The svm approach revisited. In: Proceedings of RANLP-2003.
- David Haussler. (1999). Convolution kernels on discrete structures. Technical Report UCSC-CRL-99- 10, July.
- Zheng Ping Jiang, Jia Li, and Hwee Tou Ng. (2005). Semantic argument classification exploiting argument interdependence. In: Proceedings of IJCAI-2005.
- Thorsten Joachims, Nello Cristianini, and John Shawe- Taylor. (2001). Composite kernels for hypertext categorisation. In: Proceedings of ICML-2001, pages 250–257.
- Ting Liu, Wanxiang Che, Sheng Li, Yuxuan Hu, and Huaijun Liu. (2005). Semantic role labeling system using maximum entropy classifier. In: Proceedings of CoNLL-2005, pages 189–192.
- Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. (2002). Text classification using string kernels. Journal of Machine Learning Research, 2:419–444.
- Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. (1993). Building a large annotated corpus of english: the penn treebank. Computational Linguistics, 19(2):313–330.
- Alessandro Moschitti. (2004). A study on convolution kernels for shallow statistic parsing. In: Proceedings ofACL 2004, pages 335–342.
- Rodney D. Nielsen and Sameer Pradhan. (2004). Mixing weak learners in semantic parsing. In: Proceedings of EMNLP-2004.
- Martha Palmer, Dan Gildea, and Paul Kingsbury. (2005). The proposition bank: An annotated corpus of semantic roles. Computational Linguistics, 31(1).
- Sameer Pradhan, Kadri Hacioglu, Valeri Krugler, Wayne Ward, James H. Martin, and Daniel Jurafsky. 2005a. Support vector learning for semantic argument classification. Machine Learning Journal.
- Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Martin, and Daniel Jurafsky. 2005b. Semantic role labeling using different syntactic views. In: Proceedings of ACL-2005, pages 581–588.
- Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav Zimak. (2004). Semantic role labeling via integer linear programming inference. In: Proceedings of Coling-2004, pages 1346–1352.
- Vasin Punyakanok, Dan Roth, and]]Wen tau Yih]]. (2005). The necessity of syntactic parsing for semantic role labeling. In: Proceedings of IJCAI-2005, pages 1117–1123.
- Chris Watkins. (1999). Dynamic alignment kernels. Technical Report CSD-TR-98-11, Jan.
- Nianwen Xue and Martha Palmer. (2004). Calibrating features for semantic role labeling. In: Proceedings of EMNLP 2004.
- Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. (2003). Kernel methods for relation extraction. Journal of Machine Learning Research, 3:1083–1106.
,
Author | volume | Date Value | title | type | journal | titleUrl | doi | note | year | |
---|---|---|---|---|---|---|---|---|---|---|
2006 AHybridConvolTreeKernelForSRL | Min Zhang W. Che T. Liu S. Li | A Hybrid Convolution Tree Kernel for Semantic Role Labeling | http://acl.ldc.upenn.edu/P/P06/P06-2010.pdf |