2002 StochasticLambdaCalculusandMona

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Stochastic Lambda Calculus, Probabilistic Programming Language.

Notes

Cited By

Quotes

Abstract

Probability distributions are useful for expressing the meanings of probabilistic languages, which support formal modeling of and reasoning about uncertainty. Probability distributions form a monad, and the monadic definition leads to a simple, natural semantics for a stochastic lambda calculus, as well as simple, clean implementations of common queries. But the monadic implementation of the expectation query can be much less efficient than current best practices in probabilistic modeling. We therefore present a language of measure terms, which can not only denote discrete probability distributions but can also support the best known modeling techniques. We give a translation of stochastic lambda calculus into measure terms. Whether one translates into the probability monad or into measure terms, the results of the translations denote the same probability distribution.

References

;

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2002 StochasticLambdaCalculusandMonaAvi Pfeffer
Norman Ramsey
Stochastic Lambda Calculus and Monads of Probability Distributions10.1145/503272.5032882002