2001 MulticlassCancerDiagUsingTumorGeneExpr

From GM-RKB
Jump to navigation Jump to search

Subject Headings: Multiclass Classification Task.

Notes

Cited By

~1070 http://scholar.google.com/scholar?cites=3873526504974074566

Quotes

Abstract

Support Vector Machine (SVM) Algorithm and One vs. All (OVA) Classification Scheme.

  • … In going from binary to multiclass classification, we used an OVA approach (described in Results). Given m classes and m trained classifier)s, a new sample takes the class of the classifier with the largest real valued output class = arg maxi=1...m fi, where f i is the real valued output of the ith classifier. A positive prediction strength corresponds to a test sample being assigned to a single class rather than to the “all other” class.

References


,

 AuthorvolumeDate ValuetitletypejournaltitleUrldoinoteyear
2001 MulticlassCancerDiagUsingTumorGeneExprSridhar Ramaswamy
Pablo Tamayo
Sayan Mukherjee
Chen-Hsiang Yeang
Michael Angelo
Christine Ladd
Michael Reich
Eva Latulippe
Jill P. Mesirov
Tomaso Poggio
William Gerald
Massimo Loda
Eric S. Lander
Todd R. Golub
Ryan M. Rifkin
Multiclass Cancer Diagnosis Using Tumor Gene Expression SignaturesProceedings of the National Academy of Sciences of the United States of Americahttp://www.pnas.org/content/98/26/15149.long10.1073/pnas.2115663982001