Spherical Harmonic
(Redirected from spherical harmonic)
Jump to navigation
Jump to search
A Spherical Harmonic is a set of angular functions that are obtained from solution to the Laplace's equation in spherical polar coordinates.
- Context:
- It is usually denoted by [math]\displaystyle{ Y_\ell^m (\theta, \phi) }[/math], where [math]\displaystyle{ \theta }[/math] is the polar (a.k.a co-latitudinal) coordinate and [math]\displaystyle{ \phi }[/math] is the azimuthal (a.k. longitudinal) coordinate, [math]\displaystyle{ \ell }[/math] is a positive integer and [math]\displaystyle{ m=-\ell, -(\ell-1), \dots, 0, \dots, \ell-1, \ell }[/math].
- It can be defined as eigenfunctions of the Legendrian Operator, [math]\displaystyle{ L^2 }[/math] with eigenvalues [math]\displaystyle{ \ell(\ell +1) }[/math], i.e.
- [math]\displaystyle{ L^2 Y_\ell^m (\theta, \phi)=\ell(\ell +1)Y_\ell^m (\theta, \phi) }[/math]
- It can be written in terms of the Associated Legendre Polynomials, [math]\displaystyle{ P_\ell^{m}(x) }[/math]
- [math]\displaystyle{ Y_{\ell, m}(\theta, \phi) = \sqrt{\frac{(2\ell+1)(\ell-m)!}{4\pi(\ell+m)!}}\ P_\ell^{m}(\cos \theta)\ e^{im\phi} }[/math]
- Example(s):
- [math]\displaystyle{ Y_{0}^{0}(\theta,\varphi)={1\over 2}\sqrt{1\over \pi} }[/math]
- [math]\displaystyle{ Y_{1}^{-1}(\theta,\varphi)={1\over 2}\sqrt{3\over 2\pi} \, \sin\theta \, e^{-i\varphi} }[/math]
- [math]\displaystyle{ Y_{1}^{0}(\theta,\varphi)={1\over 2}\sqrt{3\over \pi}\, \cos\theta }[/math]
- [math]\displaystyle{ Y_{1}^{1}(\theta,\varphi)={-1\over 2}\sqrt{3\over 2\pi}\, \sin\theta\, e^{i\varphi} }[/math]
- Small-amplitude oscillations of a spherical object
- Counter-Example(s):
- See: Quantum Harmonic Oscillator, Laplace's equation, Spherical Waves Equation.
References
2015
- (Wikipedia, 2015) ⇒http://en.wikipedia.org/wiki/Associated_Legendre_polynomials#Applications_in_physics:_spherical_harmonics
- QUOTE: What makes these functions useful is that they are central to the solution of the equation [math]\displaystyle{ \nabla^2\psi + \lambda\psi = 0 }[/math] on the surface of a sphere. In spherical coordinates [math]\displaystyle{ \theta }[/math](colatitude) and [math]\displaystyle{ \varphi }[/math] (longitude), the Laplacian is (...) When the partial differential equation (...) is solved by the method of separation of variables (...) the equation (...) has nonsingular separated solutions only when [math]\displaystyle{ \lambda = \ell(\ell+1) }[/math], and those solutions are proportional to
- [math]\displaystyle{ P_\ell^{m}(\cos \theta)\ \cos (m\phi)\ \ \ \ 0 \le m \le \ell }[/math]
- and
- [math]\displaystyle{ P_\ell^{m}(\cos \theta)\ \sin (m\phi)\ \ \ \ 0 \lt m \le \ell. }[/math]
- For each choice of [math]\displaystyle{ \ell }[/math], there are [math]\displaystyle{ 2\ell + 1 }[/math] functions for the various values of [math]\displaystyle{ m }[/math] and choices of sine and cosine. They are all orthogonal in both [math]\displaystyle{ \ell }[/math] and [math]\displaystyle{ m }[/math] when integrated over the surface of the sphere.
- The solutions are usually written in terms of complex exponentials:
- [math]\displaystyle{ Y_{\ell, m}(\theta, \phi) = \sqrt{\frac{(2\ell+1)(\ell-m)!}{4\pi(\ell+m)!}}\ P_\ell^{m}(\cos \theta)\ e^{im\phi}\qquad -\ell \le m \le \ell.
}[/math]
- The functions [math]\displaystyle{ Y_{\ell, m}(\theta, \phi) }[/math] are the spherical harmonics, and the quantity in the square root is a normalizing factor.
- Recalling the relation between the associated Legendre functions of positive and negative m, it is easily shown that the spherical harmonics satisfy the identity
- [math]\displaystyle{ Y_{\ell, m}^*(\theta, \phi) = (-1)^m Y_{\ell, -m}(\theta, \phi). }[/math]
- The spherical harmonic functions form a complete orthonormal set of functions in the sense of Fourier series.
- (Physics Pages, 2015) ⇒ http://www.physicspages.com/2011/03/25/schrodinger-equation-in-three-dimensions-spherical-harmonics/
2012
- (Haber, 2012) ⇒ Howard Haber (2012) "Lecture Notes:Physics 116C, Chapter 12" http://scipp.ucsc.edu/~haber/ph116C/SphericalHarmonics_12.pdf
2008
- (Jarosz 2008) ⇒ Wojciech Jarosz (2008)"Efficient Monte Carlo Methods for Light Transport in Scattering Media", PhD Dissertation, Appendix B http://www.cs.dartmouth.edu/~wjarosz/publications/dissertation/appendixB.pdf
1999
- (Mathworld Wolfram, 1999) ⇒ http://mathworld.wolfram.com/SphericalHarmonic.html
1997
- (J.Christensen-Dalsgaard 1997) ⇒ Jørgen Christensen-Dalsgaard (1997), "Lecture Notes on Stellar Oscillations" http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.9910
- QUOTE: As shown in Chapter 4, small-amplitude oscillations of a spherical object like a star can be described in terms of spherical harmonics [math]\displaystyle{ Y_{\ell, m}(\theta, \phi) }[/math]of co-latitude [math]\displaystyle{ \theta }[/math] (i.e., angular distance from the polar axis) and longitude [math]\displaystyle{ \phi }[/math]. Here
- [math]\displaystyle{ Y_{\ell, m}(\theta, \phi) = (-1)^m c_{lm} P_\ell^{m}(\cos \theta)\ exp(im\phi) }[/math]
- where [math]\displaystyle{ P_\ell^{m} }[/math] is a Legendre function, and the normalization [math]\displaystyle{ c_{lm} }[/math] constant is determined by
- [math]\displaystyle{ c_{lm}^2\frac{(2\ell+1)(\ell-m)!}{4\pi(\ell+m)!} }[/math]
- such that the integral of [math]\displaystyle{ |Y_{\ell, m}(\theta, \phi)|^2 }[/math]over the unit sphere is 1.
1980
- (J.P. Cox, 1980) ⇒ John P. Cox (1980). “Theory of Stellar Pulsation" , Princeton University Press, Princeton series in Astrophysics Edited by Jeremiah P. Ostriker
- See : Chapter 17(Section 17.3 Expression of Perturbation variables in Terms of Spherical Harmonics"), pages 218 - 220
1977
- (Cohen-Tannoudji et al., 1977) ⇒ Claude Cohen-Tannoudji, Bernard Diu and Frank Laloe (1977). “Quantum mechanics Vol. 2" Wiley (Publication years: 1977, 1996), Hermann (Publication years:1977, 2007) and Wiley-Verlag (2011) ⇒https://books.google.ca/books?id=crewAgvSUAM
- See : Complements of Chapter 7: Free spherical waves (pages 940 - 950) and Complements of Chapter 10: Addition of spherical harmonics (pages 1044 - 1047)