sklearn.neural network.BernoulliRBM

From GM-RKB
Jump to navigation Jump to search

A sklearn.neural_network.BernoulliRBM is a Restricted Boltzmann Machines Training System within sklearn.neural_network.

1) Import RBM Training System from scikit-learn : from sklearn.neural_network import BernoulliRBM
2) Input training data X
3) Create RBM object: rbm_model=BernoulliRBM([n_components=256, learning_rate=0.1, ...])
4) Choose method(s):
  • fit(X[, y]), Fits the model to the data X.
  • fit_transform(X[, y]), Fits the model to the data X, then transform it.
  • get_params([deep]) Gets parameters for this estimator.
  • gibbs(v) Performs one Gibbs sampling step.
  • partial_fit(X[, y]), Fits the model to the data X which should contain a partial segment of the data.
  • score_samples(X), , Computes the pseudo-likelihood of X.
  • set_params(**params), Sets the parameters of this estimator.
  • transform(X), Computes the hidden layer activation probabilities, P(h=1|v=X).


References

2018a

2018b