Purine Molecule
(Redirected from purine)
Jump to navigation
Jump to search
A Purine Molecule is a nitrogen-containing heterocyclic compound that consists of a pyrimidine ring fused to an imidazole ring.
- Context:
- It can be Water Soluble.
- See: Enzyme, Aromatic, Organic Compound, Pyrimidine, Imidazole, Tautomer, Liver, Kidney, Caffeine, Uric Acid.
References
2019
- (Wikipedia, 2019) ⇒ https://en.wikipedia.org/wiki/Purine Retrieved:2019-10-19.
- Purine is a heterocyclic aromatic organic compound that consists of a pyrimidine ring fused to an imidazole ring. It is water-soluble. Purine also gives its name to the wider class of molecules, purines, which include substituted purines and their tautomers. They are the most widely occurring nitrogen-containing heterocycles in nature. Purines are found in high concentration in meat and meat products, especially internal organs such as liver and kidney. In general, plant-based diets are low in purines. Examples of high-purine sources include: sweetbreads, anchovies, sardines, liver, beef kidneys, brains, meat extracts (e.g., Oxo, Bovril), herring, mackerel, scallops, game meats, beer (from the yeast) and gravy. A moderate amount of purine is also contained in red meat, beef, pork, poultry, fish and seafood, asparagus, cauliflower, spinach, mushrooms, green peas, lentils, dried peas, beans, oatmeal, wheat bran, wheat germ, and haws. Purines and pyrimidines make up the two groups of nitrogenous bases, including the two groups of nucleotide bases. Two of the four deoxyribonucleotides (deoxyadenosine and deoxyguanosine) and two of the four ribonucleotides (adenosine, or AMP, and guanosine, or GMP), the respective building blocks of DNA and RNA, are purines. In order to form DNA and RNA, both purines and pyrimidines are needed by the cell in approximately equal quantities. Both purine and pyrimidine are self-inhibiting and activating. When purines are formed, they inhibit the enzymes required for more purine formation. This self-inhibition occurs as they also activate the enzymes needed for pyrimidine formation. Pyrimidine simultaneously self-inhibits and activates purine in similar manner. Because of this, there is nearly an equal amount of both substances in the cell at all times.