Pattern Recognition Task

From GM-RKB
(Redirected from pattern recognition problem)
Jump to navigation Jump to search

A Pattern Recognition Task is a Knowledge Discovery Task that can automatically discover a previously unknown pattern within the data by using machine learning methods.



References

2019a

2019b

  • (Wikipedia, 2019) ⇒ https://en.wikipedia.org/wiki/Pattern_recognition Retrieved:2019-9-26.
    • Pattern recognition is the automated recognition of patterns and regularities in data. Pattern recognition is closely related to artificial intelligence and machine learning,[1] together with applications such as data mining and knowledge discovery in databases (KDD), and is often used interchangeably with these terms. However, these are distinguished: machine learning is one approach to pattern recognition, while other approaches include hand-crafted (not learned) rules or heuristics; and pattern recognition is one approach to artificial intelligence, while other approaches include symbolic artificial intelligence. A modern definition of pattern recognition is: This article focuses on machine learning approaches to pattern recognition. Pattern recognition systems are in many cases trained from labeled "training" data (supervised learning), but when no labeled data are available other algorithms can be used to discover previously unknown patterns (unsupervised learning). Machine learning is the common term for supervised learning methods and originates from artificial intelligence, whereas KDD and data mining have a larger focus on unsupervised methods and stronger connection to business use. Pattern recognition has its origins in engineering, and the term is popular in the context of computer vision: a leading computer vision conference is named Conference on Computer Vision and Pattern Recognition. In pattern recognition, there may be a higher interest to formalize, explain and visualize the pattern, while machine learning traditionally focuses on maximizing the recognition rates. Yet, all of these domains have evolved substantially from their roots in artificial intelligence, engineering and statistics, and they've become increasingly similar by integrating developments and ideas from each other. In machine learning, pattern recognition is the assignment of a label to a given input value. In statistics, discriminant analysis was introduced for this same purpose in 1936. An example of pattern recognition is classification, which attempts to assign each input value to one of a given set of classes (for example, determine whether a given email is "spam" or "non-spam"). However, pattern recognition is a more general problem that encompasses other types of output as well. Other examples are regression, which assigns a real-valued output to each input; sequence labeling, which assigns a class to each member of a sequence of values (for example, part of speech tagging, which assigns a part of speech to each word in an input sentence); and parsing, which assigns a parse tree to an input sentence, describing the syntactic structure of the sentence.

      Pattern recognition algorithms generally aim to provide a reasonable answer for all possible inputs and to perform "most likely" matching of the inputs, taking into account their statistical variation. This is opposed to pattern matching algorithms, which look for exact matches in the input with pre-existing patterns. A common example of a pattern-matching algorithm is regular expression matching, which looks for patterns of a given sort in textual data and is included in the search capabilities of many text editors and word processors. In contrast to pattern recognition, pattern matching is not generally a type of machine learning, although pattern-matching algorithms (especially with fairly general, carefully tailored patterns) can sometimes succeed in providing similar-quality output of the sort provided by pattern-recognition algorithms.

  1. Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning (PDF). Springer. "Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years."

2014

2011

2009

2006

1990

1981