Neural Network Output Layer

From GM-RKB
(Redirected from network output)
Jump to navigation Jump to search

A Neural Network Output Layer is a neural network layer that comes last that contains all output values.



References

2017a

Left: A 2-layer Neural Network (one hidden layer of 4 neurons (or units) and one output layer with 2 neurons), and three inputs.

Right:A 3-layer neural network with three inputs, two hidden layers of 4 neurons each and one output layer. Notice that in both cases there are connections (synapses) between neurons across layers, but not within a layer.

Naming conventions. Notice that when we say N-layer neural network, we do not count the input layer. Therefore, a single-layer neural network describes a network with no hidden layers (input directly mapped to output). In that sense, you can sometimes hear people say that logistic regression or SVMs are simply a special case of single-layer Neural Networks. You may also hear these networks interchangeably referred to as “Artificial Neural Networks” (ANN) or “Multi-Layer Perceptrons” (MLP). Many people do not like the analogies between Neural Networks and real brains and prefer to refer to neurons as units.

Output layer. Unlike all layers in a Neural Network, the output layer neurons most commonly do not have an activation function (or you can think of them as having a linear identity activation function). This is because the last output layer is usually taken to represent the class scores (e.g. in classification), which are arbitrary real-valued numbers, or some kind of real-valued target (e.g. in regression).

2017b

We classify the neural networks from their number of hidden layers and how they connect, for instance the network above have 2 hidden layers. Also if the neural network has/or not loops we can classify them as Recurrent or Feed-forward neural networks.

 Neural networks from more than 2 hidden layers can be considered a deep neural network.

2003