Kernel Regression System
A Kernel Regression System is a nonparametric regression system that implements a kernel regression algorithm to solve a kernel regression task.
- AKA: KR Regressor.
- Example(s):
- Counter-Examples:
- See: Gaussian Process, Nonparametric Regression, Kernel Method.
References
2017a
- (sklearn-extensions , 2017) ⇒ http://wdm0006.github.io/sklearn-extensions/kernel_regression.html Retrieved: 2017-09-03
- QUOTE: The kernel regression module can be imported as:
import sklearn_extensions as ske mdl = ske.kernel_regression.KernelRegression() mdl.fit_predict(X, y) |
2017b
- (Statsmodels, 2017) ⇒ http://www.statsmodels.org/dev/generated/statsmodels.nonparametric.kernel_regression.KernelReg.html
- QUOTE: statsmodels.nonparametric.kernel_regression.KernelReg
statsmodels.nonparametric.kernel_regression.
KernelReg
(endog, exog, var_type, reg_type='ll', bw='cv_ls')sourceNonparametric kernel regression class.
Calculates the conditional mean [math]\displaystyle{ E[y|X] }[/math] where [math]\displaystyle{ g(X)+e }[/math]. Note that the “local constant” type of regression provided here is also known as Nadaraya-Watson kernel regression; “local linear” is an extension of that which suffers less from bias issues at the edge of the support(...)
- QUOTE: statsmodels.nonparametric.kernel_regression.KernelReg
2017c
- (astroML) ⇒ http://www.astroml.org/modules/generated/astroML.linear_model.NadarayaWatson.html
- QUOTE: class
astroML.linear_model.NadarayaWatson
(kernel='gaussian', h=None, **kwargs) Nadaraya-Watson Kernel Regression
This is basically a gaussian-weighted moving average of points (...)
- QUOTE: class