Nadaraya-Watson Kernel Regression Task

From GM-RKB
Jump to navigation Jump to search

A Nadaraya-Watson Kernel Regression Task is a Kernel Regression Task that is based on Nadaraya-Watson Estimator.



References

2017

  • (Wikipedia, 2017) ⇒ https://en.wikipedia.org/wiki/Kernel_regression#Nadaraya Retrieved:2017-9-3.
    • Nadaraya and Watson, both in 1964, proposed to estimate [math]\displaystyle{ m }[/math] as a locally weighted average, using a kernel as a weighting function. The Nadaraya–Watson estimator is: [math]\displaystyle{ \widehat{m}_h(x)=\frac{\sum_{i=1}^n K_h(x-x_i) y_i}{\sum_{i=1}^nK_h(x-x_i)} }[/math] where [math]\displaystyle{ K }[/math] is a kernel with a bandwidth [math]\displaystyle{ h }[/math] . The denominator is a weighting term with sum 1.

      Derivation

      [math]\displaystyle{ \operatorname{E}(Y | X=x) = \int y f(y|x) dy = \int y \frac{f(x,y)}{f(x)} dy }[/math] Using the kernel density estimation for the joint distribution f(x,y) and f(x) with a kernel K, [math]\displaystyle{ \hat{f}(x,y) = \frac{1}{n}\sum_{i=1}^{n} K_h\left(x-x_i\right) K_h\left(y-y_i\right) }[/math] ,
      [math]\displaystyle{ \hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K_h\left(x-x_i\right) }[/math] ,

      we get [math]\displaystyle{ \operatorname{\hat E}(Y | X=x) = \int \frac{y \sum_{i=1}^{n} K_h\left(x-x_i\right) K_h\left(y-y_i\right)}{\sum_{i=1}^{n} K_h\left(x-x_i\right)} dy, }[/math] [math]\displaystyle{ \operatorname{\hat E}(Y | X=x) = \frac{\sum_{i=1}^{n} K_h\left(x-x_i\right) \int y \, K_h\left(y-y_i\right) dy}{\sum_{i=1}^{n} K_h\left(x-x_i\right)}, }[/math] [math]\displaystyle{ \operatorname{\hat E}(Y | X=x) = \frac{\sum_{i=1}^{n} K_h\left(x-x_i\right) y_i}{\sum_{i=1}^{n} K_h\left(x-x_i\right)}, }[/math] which is the Nadaraya–Watson estimator.