Pseudo-Inverse Algorithm: Difference between revisions

From GM-RKB
Jump to navigation Jump to search
No edit summary
m (Text replacement - "ions]] " to "ion]]s ")
 
(79 intermediate revisions by 5 users not shown)
Line 1: Line 1:
A [[Pseudo-Inverse Algorithm]] is ...
A [[Pseudo-Inverse Algorithm]] is a [[Matrix Decomposition Algorithm]] that can solve a [[least square system]] such that each [[column vector]] of the [[solution]] has a [[minimum norm]].
* <B><U>AKA</U>:</B> [[Pseudo-Inverse]], [[Pseudoinverse Algorithm]].
* <B>AKA:</B> [[Pseudo-Inverse Algorithm|Moore-Penrose Inverse Algorithm]], [[Pseudo-Inverse Algorithm|Generalized Inverse Algorithm]].
* <B><U>See</U>:</B> [[Function Fitting Algorithm]], [[Pseudoinverse Matrix]].
* <B>Example(s):</B>
** a [[Bose-Nguyen Generalized Inverse Algorithm]] ([[2016_EfficientGeneralizedInverseforS|Bose & Nguyen, 2016]]),
** a [[Weighted Pseudo-Inverse Algorithm]] ([[2015_AModifiedWeightedPseudoInverseC|Shao et al., 2015]]),
** a [[Online PseudoInverse Update Method (OPIUM) Algorithm]] ([[2013_2013SpecialIssueLearningthePseu|Tapson & Schaik, 2013]]),
** a [[Courrieu's Fast Moore-Penrose Inverse Algorithm]] ([[2008_FastComputationofMoorePenroseIn|Courrieu (2008)]]),
** a [[Fast B-Spline Pseudo-inversion Algorithm]] ([[2007_AFastBSplinePseudoInversionAlgo|Tristan & Arribas, 2007]]),
** a [[Herron's Pseudo-Inverse Algorithm]] ([[#1966|Herron, 1966]]),
** a [[Greville's Pseudo-Inverse Algorithm]] ([[#1960|Greville, 1960]]).
** …
* <B>Counter-Example(s):</B>
** a [[Matrix Multiplication Algorithm]] such as:
*** [[Coppersmith-Winograd Algorithm]];
*** [[Strassen Algorithm]],
** a [[Matrix Normalization Algorithm]],
** a [[Gram-Schmidt Algorithm]],
** a [[Householder Algorithm]].
* <B>See:</B> [[Function Fitting Algorithm]], [[Pseudoinverse Matrix]], [[Matrix Decomposition]], [[QR Factorization]], [[Singular Value Decomposition]].
 
----
----
----
----
==References ==


===1965===
== References ==
* (Golub & Kahan, 1965) &rArr; G. Golub and W. Kahan. (1965). "</I>[http://www.jstor.org/stable/2949777 Calculating the Singular Values and Pseudo-Inverse of a Matrix]." In: Journal of the Society for Industrial and Applied Mathematics: Series B, Numerical Analysis, 2(2).
 
=== 2019 ===
* (Wikipedia, 2019) ⇒ https://en.wikipedia.org/wiki/Moore–Penrose_inverse Retrieved:2019-7-11.
** In [[mathematics]], and in particular [[linear algebra]], a '''pseudoinverse''' {{math|''A''<sup>+</sup>}} of a [[matrix (mathematics)|matrix]] {{math|''A''}} is a [[generalization]] of the [[inverse matrix]]. The most widely known type of matrix pseudoinverse is the '''Moore–Penrose inverse''',which was independently described by [[E. H. Moore]]<ref name="Moore1920">Moore, E. H. (1920). [http://projecteuclid.org/euclid.bams/1183425340 "On the reciprocal of the general algebraic matrix"]. Bulletin of the American Mathematical Society. 26 (9): 394–95. [https://doi.org/10.1090%2FS0002-9904-1920-03322-7 doi:10.1090/S0002-9904-1920-03322-7].</ref> in 1920, [[Arne Bjerhammar]]<ref name="Bjerhammar1951">Bjerhammar, Arne (1951). “Application of calculus of matrices to method of least squares; with special references to geodetic calculations". Trans. Roy. Inst. Tech. Stockholm. 49.</ref> in 1951, and [[Roger Penrose]]<ref name="Penrose1955">Penrose, Roger (1955). “A generalized inverse for matrices". Proceedings of the Cambridge Philosophical Society. 51 (3): 406–13. [https://doi.org/10.1017%2FS0305004100030401 doi:10.1017/S0305004100030401].</ref> in 1955. Earlier, [[Erik Ivar Fredholm]] had introduced the concept of a pseudoinverse of [[integral operator]]s in 1903. When referring to a matrix, the term pseudoinverse, without further specification, is often used to indicate the Moore–Penrose inverse. The term [[Pseudo-Inverse Algorithm|generalized inverse]] is sometimes used as a synonym for pseudoinverse.        <P>        A common use of the pseudoinverse is to compute a "best fit" ([[Ordinary least squares|least squares]]) solution to a [[system of linear equation]]s that lacks a unique solution (see below under [[#Applications|§ Applications]]).        <P>        Another use is to find the minimum ([[Euclidean norm|Euclidean]]) norm solution to a system of linear equations with multiple solutions. The pseudoinverse facilitates the statement and proof of results in linear algebra.        <P>        The pseudoinverse is defined and unique for all matrices whose entries are [[Real number|real]] or [[Complex number|complex]] numbers. It can be computed using the [[singular value decomposition]].
<references/>
 
=== 2016 ===
* ([[2016_EfficientGeneralizedInverseforS|Kadiam Bose & Nguyen, 2016]]) ⇒ [[S. Kadiam Bose]], and [[D. T. Nguyen]]. ([[2016]]). &ldquo;[https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=62628 Efficient Generalized Inverse for Solving Simultaneous Linear Equations].&rdquo; In: Journal of Applied Mathematics and Physics, 4. [http://dx.doi.org/10.4236/jamp.2016.41003 doi:10.4236/jamp.2016.41003]
** QUOTE: The [[Pseudo-Inverse Matrix|generalized (or pseudo) inverse of a matrix]] is an extension of the [[Square Matrix|ordinary/regular square]] ([[Non-Singular Matrix|non-singular]]) [[matrix inverse]], which can be applied to any [[matrix]] (such as [[Singular Matrix|singular]], [[Rectangular Matrix|rectangular]] etc.). The [[Pseudo-Inverse Algorithm|generalized inverse]] has numerous important [[engineering]] and [[science]]s [[application]]s. Over the past decades, [[Pseudo-Inverse Algorithm|generalized inverse]]s of [[matrice]]s and its [[application]]s have been investigated by many [[researcher]]s [[2016_EfficientGeneralizedInverseforS#References|1-6]]. [[Pseudo-Inverse Algorithm|Generalized inverse]] is also known as “[[Moore-Penrose inverse]]” or “[[g-inverse]]” or “[[Pseudo-Inverse Algorithm|pseudo-inverse]]” etc.        <P>         [[2016_EfficientGeneralizedInverseforS|In this paper we]] introduce an efficient (in terms of [[computational time]] and [[computer memory requirement]]) [[generalized inverse formulation]] to solve [[SLE]] with full or [[deficient rank]] of the [[coefficient matrix]]. The [[coefficient matrix]] can be [[Singular Matrix|singular/non-singular]], [[Symmmetric Matrix|symmetric/unsymmetric]], or [[Square Matrix|square]]/[[Rectangular Matrix|rectangular]]. Due to popular [[MATLAB]] [[software]], which is widely accepted by [[researcher]]s and [[educator]]s worldwide, the developed [[code]] from this work is written in [[MATLAB language]].
 
=== 2015 ===
* ([[2015_AModifiedWeightedPseudoInverseC|Shao et al., 2015]]) ⇒ [[Xingyue Shao]], [[Zixuan Liang]], [[Bai Chen]], and [[Cunjia Liu]]. ([[2015]]). &ldquo;[https://www.semanticscholar.org/paper/A-modified-weighted-pseudo-inverse-control-using-Shao-Liang/d1e4312010d7473432db5e74c2db5b2a6c926d04 A Modified Weighted Pseudo-inverse Control Allocation Using Genetic Algorithm].&rdquo; In: Proceedings of 34th Chinese Control Conference (CCC 2015).. [http://dx.doi.org/10.1109/ChiCC.2015.7260507 doi:10.1109/ChiCC.2015.7260507]
 
=== 2013 ===
* ([[2013_2013SpecialIssueLearningthePseu|Tapson & Van Schaik, 2013]]) ⇒ [[J. Tapson]], and [[A. Van Schaik]]. ([[2013]]). &ldquo;[https://www.westernsydney.edu.au/__data/assets/pdf_file/0003/783156/Tapson,_van_Schaik_-_2013_-_Learning_the_pseudoinverse_solution_to_network_weights.pdf 2013 Special Issue: Learning the Pseudoinverse Solution to Network Weights].&rdquo; In: Neural Networks Journal, 45. [http://dx.doi.org/10.1016/j.neunet.2013.02.008 doi:10.1016/j.neunet.2013.02.008]
** QUOTE: The [[solution]] to the [[network weight]]s is exactly the same as that which would be [[calculate]]d by [[singular value decomposition]]. It [[converge]]s with a single [[forward iteration]] per [[input data]] [[sample]], and as such is ideal for [[realtime]] [[online computation]] of the [[pseudoinverse solution]]. It requires significantly less [[memory]] than the [[SVD]] method, as its [[memory requirement]] scales as the [[square]] of the [[size]] of the [[hidden layer]], whereas the [[SVD]] [[memory requirement]] scales with the [[product]] of the [[hidden layer]] [[size]] and the [[size]] of the [[training data set]]. Given that the [[data set]] [[size]] should significantly exceed the [[hidden layer]] [[size]], the former is advantageous. We call the [[algorithm OPIUM (Online PseudoInverse Update Method)]].        <P>         [[OPIUM]] is adapted from an [[iterative method]] for [[computing]] the [[Pseudo-Inverse Algorithm|pseudoinverse]], known as [[Greville’s method]] ([[Greville, 1960]]). The existence of [[OPIUM]], and its [[biological plausibility]], suggests that there is no reason why a [[biological neural network]] would not arrive at the same [[weight]]s that are computed using a [[singular value decomposition]], and therefore that this method of [[synthesizing]] [[network structure]]s may be used without the fear that it is [[biologically implausible]].
 
=== 2008 ===
* ([[2008_FastComputationofMoorePenroseIn|Courrieu, 2008]]) ⇒ [[Pierre Courrieu]]. ([[2008]]). &ldquo;[https://arxiv.org/pdf/0804.4809.pdf Fast Computation of Moore-Penrose Inverse Matrices ].&rdquo; In: Neural Information Processing - Letters and Reviews  Journal, 8.
** QUOTE: The [[Moore-Penrose inverse]], also called [[Pseudo-Inverse Algorithm|Pseudoinverse]], or [[Pseudo-Inverse Algorithm|Generalized Inverse]], allows for solving [[least square system]]s, even with [[rank deficient matrice]]s, in such a way that each [[column vector]] of the solution has a [[minimum norm]], which is the desired property stated above.
 
=== 2007 ===
* ([[2007_AFastBSplinePseudoInversionAlgo|Tristán & Arribas, 2007]]) ⇒ [[Antonio Tristán]], and [[Juan Ignacio Arribas]]. ([[2007]]). &ldquo;[https://link.springer.com/chapter/10.1007%2F978-3-540-74272-2_95 A Fast B-spline Pseudo-inversion Algorithm for Consistent Image Registration].&rdquo; In: [[Proceedings of the 12th International Conference on Computer analysis of images and patterns]]. ISBN:978-3-540-74271-5
 
=== 1966 ===
* (Herron, 1966) ⇒ [[Christopher R. Herron]] (1966). [https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19670014642.pdf "Computing the pseudo-inverse"].
** QUOTE: An [[orthogonalization algorithm]] for producing the [[Pseudo-Inverse Algorithm|pseudoinverse]] of a [[matrix]] is described, and a [[FORTRAN]] [[program]] which realizes the [[algorithm]] is given in detail.
 
=== 1965 ===
* (Golub & Kahan, 1965) G. Golub and W. Kahan. (1965). </i>[http://www.jstor.org/stable/2949777 Calculating the Singular Values and Pseudo-Inverse of a Matrix].In: Journal of the Society for Industrial and Applied Mathematics: Series B, Numerical Analysis, 2(2).
 
=== 1960 ===
* (Greville,1960) ⇒ [[T. N. E. Greville]] (1960). [http://benisrael.net/GREVILLE-GI-60.pdf "Some applications of the pseudoinverse of a matrix"]. [[SIAM review]], 2(1), 15-22.
 
=== 1955 ===
* (Penrose, 1955) ⇒ [[Roger Penrose]] (1955, July). [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.5377&rep=rep1&type=pdf "A generalized inverse for matrices"]. In [[Mathematical proceedings of the Cambridge philosophical society]] (Vol. 51, No. 3, pp. 406-413). Cambridge University Press.


----
----


__NOTOC__
__NOTOC__
[[Category:Malformed]]
[[Category:Concept]]
[[Category:Mathematics]]
[[Category:Machine Learning]]

Latest revision as of 07:31, 22 August 2024

A Pseudo-Inverse Algorithm is a Matrix Decomposition Algorithm that can solve a least square system such that each column vector of the solution has a minimum norm.



References

2019

  1. Moore, E. H. (1920). "On the reciprocal of the general algebraic matrix". Bulletin of the American Mathematical Society. 26 (9): 394–95. doi:10.1090/S0002-9904-1920-03322-7.
  2. Bjerhammar, Arne (1951). “Application of calculus of matrices to method of least squares; with special references to geodetic calculations". Trans. Roy. Inst. Tech. Stockholm. 49.
  3. Penrose, Roger (1955). “A generalized inverse for matrices". Proceedings of the Cambridge Philosophical Society. 51 (3): 406–13. doi:10.1017/S0305004100030401.

2016

2015

2013

2008

2007

1966

1965

1960

1955